Supporting Information

A Sole Multi-Analyte receptor responds with three distinct fluorescence signals: Traffic signal like sensing of Al$^{3+}$, Zn$^{2+}$ and F$^{-}$

Barun Kumar Datta, a Durairaj Thiyagarajan, b Aiyagari Ramesh*, b and Gopal Das*, a

a Department of Chemistry
Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
E-mail: gdas@iitg.ernet.in (Gopal Das)

b Department of Biosciences and Bioengineering
Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
E-mail: aramesh@iitg.ernet.in (Aiyagari Ramesh)
Fig. S1: Changes in the absorption spectra of L upon the addition of different metal ions. INSET: Visual colour change upon the addition of Al$^{3+}$ and Zn$^{2+}$ to L.
Fig. S2: Changes in the emission spectra of L upon the addition of different metal ions. INSET: Visual colour change upon the addition of Al$^{3+}$ and Zn$^{2+}$ to L under UV lamp ($\lambda_{ex}=365$ nm).
Fig. S3: Changes in the absorption spectra of L upon the addition of different anions.
Fig. S4: Changes in the emission spectra of L upon the addition of different anions.
Fig S5: Normalized fluorescence responses of L (10 μM) to various cations in mixed solvent. The red bars represent the emission intensities of L in the presence of cations of interest (5 eqv.). The black bars represent the change of the emission that occurs upon the subsequent addition of Al³⁺ to the above solution.
Fig S6: Normalized fluorescence responses of L (10 μM) to various cations in mixed solvent. The red bars represent the emission intensities of L in the presence of cations of interest (5 eqv.). The black bars represent the change of the emission that occurs upon the subsequent addition of Zn$^{2+}$ to the above solution.
Fig S7: Job’s plot between L and Al$^{3+}$ ions. X_{Host} is the mole fraction of L and ΔI is the change (I-I$_0$) in the intensity of the emission spectra in presence of guest i.e; Al$^{3+}$.
Fig S8: Job’s plot between L and Zn$^{2+}$ ions. X_{Host} is the mole fraction of L and ΔI is the change (I-I$_0$) in the intensity of the emission spectra in presence of guest i.e; Zn$^{2+}$.
Fig S9: Bensei-Hildebrand plot obtained for Al$^{3+}$ from the emission experiment (emission intensity calculated from 500 nm) studies.
Fig S10: Bensei-Hildebrand plot obtained for Zn$^{2+}$ from the emission experiment (emission intensity calculated from 550 nm) studies.
Fig S11: Effect of pH on the fluorescence intensity of L.
Fig S12: MTT assay to determine the cytotoxic effects of compounds L, L–Al and L–Zn complex on HeLa cells.
Fig S13: 1H-NMR spectra of L in CDCl$_3$.
Fig S14: Expanded 1H-NMR spectra of L in CDCl$_3$.
Fig S15: 13C-NMR spectra of L in CDCl$_3$.
Fig S16: Mass spectrum of L, Calculated \([L + H]^+ = 503.1832\), Found 503.1867 (Mass spectrum obtained in positive mode).
Fig. S17: 1H-NMR titration spectra of L with Al$^{3+}$ in DMSO-d$_6$.
Fig. S18: 1H-NMR titration spectras of L with Zn$^{2+}$ in DMSO-d$_6$.
Fig. S19: 1H-NMR titration spectras of L with F$^-$ in CDCl$_3$.
Fig. S20: Crystal structure of L and various interactions presents in it.