Table of Contents

S1 Numbering schemes

S2 Experimental details and spectroscopic data

S2.1 Synthetic details and spectroscopic data for $\text{M}_2[\text{B}_{12}\text{H}_{11}\text{OH}]^{2-}$ ($\text{M} = \text{Na, K}$)

S2.2 Synthetic details and spectroscopic data for $\text{Na}_2[\text{B}_{12}\text{Cl}_{11}\text{OH}]$

S2.3 Synthetic details and spectroscopic data for $\text{Na}_2[\text{B}_{12}\text{Br}_{11}\text{OH}]$

S2.4 Spectroscopic data for the salts containing the $[\text{B}_{12}\text{Cl}_{11}\text{O-propyl}]^{2-}$ anion

S2.5 Spectroscopic data for the salts containing the $[\text{B}_{12}\text{Cl}_{11}\text{O-octyl}]^{2-}$ anion

S2.6 Spectroscopic data for the salts containing the $[\text{B}_{12}\text{Cl}_{11}\text{O-dodecyl}]^{2-}$ anion

S2.7 Spectroscopic data for the salts containing the $[\text{B}_{12}\text{Br}_{11}\text{O-propyl}]^{2-}$ anion

S2.8 Spectroscopic data for salts containing the $[\text{B}_{12}\text{Br}_{11}\text{O-octyl}]^{2-}$ anion

S2.9 Spectroscopic data for salts containing the $[\text{B}_{12}\text{Br}_{11}\text{O-dodecyl}]^{2-}$ anion

S2.10 Thermal analysis

S2.11 Cyclic voltammetry

S2.12 Crystal structures
S1 Numbering Schemes

Figure S1: Numbering scheme for a $[\text{B}_{12}X_{11}\text{OR}]^{-}$ anion according to IUPAC

Figure S2: Numbering of the protons of the $[\text{C}_6\text{mim}]^+$ cation

S2 Experimental Details and Spectroscopic Data

General remarks. IR spectra were measured on a Bruker ALPHA P FT-IR spectrometer equipped with a diamond ATR attachment. Raman spectra of samples in flame-sealed capillaries were recorded using a Bruker Equinox 55 FRA 106/S FT-Raman spectrometer equipped with a highly sensitive Ge detector and a Nd:YAG-Laser (1064 nm). NMR spectra were measured on a Bruker Avance 400 and a Bruker AvanceIII 600 spectrometer in 5 mm NMR tubes at room temperature. Chemical shifts are given with respect to Me$_4$Si (1H, 13C) and BF$_3$·OEt$_2$ (11B). Two dimensional NMR experiments (HSQC (Heteronuclear Single Quantum Coherence), HMBC (Heteronuclear Multiple Bond Correlation) and COSY(Correlated Spectroscopy)) were performed to assist the assignment of the spectra. Electrospray ionization (ESI) mass spectra were recorded using a Bruker micrOTOF instrument. Thermoanalytical measurements were done with a Mettler Toledo TGA/DSC 1
LSTAR System. The coupled thermo gravimetric / mass spectrometric measurements were carried out with a Mettler Toledo TGA/DSC 1 LSTAR System connected to a Pfeiffer Vacuum Thermostar Gas Analysis System and a Gas Controller GC 200.

S2.1 Synthetic Details and Spectroscopic Data for $M_2[B_{12}H_{11}OH]^2-$ ($M = \text{Na, K}$)

In the following the synthesis is described exemplarily for $K_2[B_{12}H_{11}OH]$. In a 500 ml three necked round flask 5.0 g (22.7 mmol) of $K_2[B_{12}H_{12}]$ were dissolved in 220 ml of water. In the next step 148 ml of H_2SO_4 (96 %) were slowly dropped into the solution (1 – 2 drops per second). Over the whole time the solution was cooled with an ice/water mixture. After the adding of the sulfuric acid the cooling was removed and the reaction mixture was heated to 90 °C, which was checked by a thermal measurement in the flask. After 120 minutes the reaction was stopped and the solution was transferred into a 1 l Erlenmeyer flask. The solution was neutralized with solid $NaOH$. Precipitating potassium- and sodium sulfate were removed by filtration several times throughout the whole neutralization process. After finishing the clear and colorless solution was directly used for next step. The product contained small amounts of unreacted $[B_{12}H_{12}]^2-$ and also twofold hydroxylated clusters, because the reaction was controlled by time.

$^{11}B\ \{^{1}H\}\ NMR\ (128.38\ MHz,\ D_2O,\ 298\ K):\ \delta = 0.67\ (s,\ 1B, \ B1-O),\ -19.1\ (s,\ 5B, \ B(2-6)-Cl),\ -17.8\ (s,\ 5B, \ B(7-11)-Cl),\ -22.7\ (s,\ 1B, \ B1-Cl)).$
Figure S4: 11B-{1H} NMR spectrum (128.39 MHz) of [NBu$_4$]$_2$[B$_{12}$H$_{11}$OH] in CD$_3$CN at 298 K

Figure S5: 11B-11B-COSY NMR spectrum (128.38 MHz) of [NBu$_4$]$_2$[B$_{12}$H$_{11}$OH] in CD$_3$CN at 298 K
Figure S6: 1H,11B correlation (400.13 MHz, HSQC (Heteronuclear Single Quantum Coherence spectrum, optimized for $J_{BH} = 100$ Hz) of $[\text{NBu}_4][\text{B}_{12}\text{H}_{11}\text{OH}]$ in CD$_3$CN at 298 K

Figure S7: 11B NMR spectrum (128.39 MHz) of Na$_2$[B$_{12}$H$_{11}$OH] in D$_2$O at 298 K
Figure S8: 11B 1H NMR spectrum (128.39 MHz) of Na$_2$[B$_{12}$H$_{11}$OH] in D$_2$O at 298 K

Figure S9: 11B NMR spectrum (128.39 MHz) of Na$_2$[B$_{12}$H$_{11}$OH] in D$_2$O (pH = 1) at 298 K
S2.2 Synthetic Details and Spectroscopic Data for Na₂[B₁₂Cl₁₁OH]

Chlorine gas was bubbled through a solution of M₂[B₁₂H₁₁OH] (prepared in the previous step) for 24 h while heating the reaction mixture to reflux. The progress of the chlorination reaction was checked by 11B and 11B{1H} NMR spectroscopy. When the chlorination was completed the solution was cooled down to room temperature and triethylamine was added. The pH value was checked to be weakly acid (~3). The mixture was stirred for a few hours to dissolve all of the triethylamine. The white precipitate was removed by filtration, washed with cold water, and dried at 110 °C under reduced pressure. The solid was transferred to a Teflon beaker and two equivalents of solid NaOH dissolved in water were added. The completeness of the metathesis reaction was checked by 1H NMR spectroscopy (absence of any triethylamine traces). The water was removed by heating and the product was obtained as a colorless solid 8.14 g (13.96 mmol, 62%, based on 5.00 g Na₂[B₁₂H₁₂]).

11B 1H NMR (128.38 MHz, D₂O, 298 K): δ = -7.4 (s, 1B, B₁-O), -13.9 (s, 10B, B(2-11)-Cl), -15.8 (s, 1B, B₁₂-Cl)). IR (ATR): $\tilde{\nu}$ = 3597 (w, sh), 2291 (vw), 2080 (vw), 1980 (vw), 1607 (vw), 1316 (vw), 1249 (w), 1211 (w), 1089 (m, sh), 1029 (s, sh), 794 (vw), 743 (vw), 711 (vw), 585 (m, sh), 545 (s, sh), 534 (vw), 456 (vw), 427 (w). Raman: $\tilde{\nu}$ = 1624 (vw), 1153 (vw), 994 (m), 409 (w), 317 (m), 301 (vs), 132 (s) cm⁻¹. ESI-MS (− mode, D₂O): m/z: 268 [B₁₂Cl₁₁OH]$^-$, 559 [B₁₂Cl₁₁OH + Na$^-$].
Figure S11: 11B NMR spectrum (128.39 MHz) of Na$_2$[B$_{12}$Cl$_{11}$OH] in D$_2$O at 298 K

Figure S12: 11B NMR spectrum (128.39 MHz) of Na$_2$[B$_{12}$Cl$_{11}$OH] in CD$_3$CN at 298 K
Figure S13: 11B-11B-COSY NMR spectrum (128.38 MHz) of Na$_2$[B$_{12}$Cl$_{11}$OH] in CD$_3$CN at 298 K

Figure S14: 1H,11B correlation (400.13 MHz) of Na$_2$[B$_{12}$Cl$_{11}$OH] in CD$_3$CN at 298 K. The resonance in the 11B NMR spectrum at -7.4 ppm shows a cross peak to a broad resonance (the hydroxo group on the boron cluster) at 2.09 ppm in the 1H NMR spectrum.
Figure S15: Negative ESI MS spectrum of the $[\text{B}_{12}\text{Cl}_{11}\text{OH}]^{2-}$ anion

Figure S16: IR (diamond ATR, top) and Raman (1000 scans, 300 mW, bottom) spectra of Na$_2$[B$_{12}$Cl$_{11}$OH]
S2.3 Synthetic Details and Spectroscopic Data for Na$_2$[B$_{12}$Br$_{11}$OH]

Methanol (approximately the same volume) was added to a solution of K$_2$[B$_{12}$H$_{11}$OH] prepared in the previous step. Potassium- and sodium sulfate precipitated and were removed by filtration. To the solution 30 ml of bromine were added dropwise and subsequently the reaction mixture was heated to reflux. Another 30 ml of bromine were added to the refluxing solution and the progress of the bromination reaction was checked by 11B and 11B {1H} NMR spectroscopy. After 24 h the solution was cooled down to room temperature and all volatiles were removed under reduced pressure. The residue was dissolved in water and the solution was acidified by adding HCl. Triethylamine was added to the solution and the pH value was checked to be still weakly acid (~ 3). The mixture was stirred for a few hours to dissolve all of the triethylamine. The white precipitate was removed by filtration, washed with cold water, and dried at 110 °C under reduced pressure. The solid was transferred to a Teflon beaker and two equivalents of solid NaOH dissolved in water were added. The absence of any traces of triethylamine was checked by 1H NMR spectroscopy. The water was removed by heating and the product was obtained as a colorless solid 13.49 g (12.59 mmol, 55%, based on 5.00 g Na$_2$[B$_{12}$H$_{12}$]).

11B NMR (128.38 MHz, CD$_3$CN, 298 K): $\delta = -4.2$ (s, 1B, $B1$-O), -14.1 (s, 10B, B(2-11)-Cl), -16.6 (s, 1B, $B12$-Cl)). IR (ATR): $\tilde{\nu} = 3674$ (w, sh), 3342 (vw), 3115 (vw), 2447 (vw), 2284 (vw), 2162 (vw), 2050 (vw), 1988 (vw), 1925 (vw), 1792 (vw), 1559 (vw), 1435 (vw), 1315 (vw), 1266 (vw), 1233 (vw), 1197 (m, sh), 1095 (s, sh), 1000 (s, sh), 989 (vs, sh), 909 (vw), 880 (vw), 728 (vw), 676 (vw), 582 (w), 536 (s, sh), 448 (vs, sh), 413 (w) cm$^{-1}$. Raman: $\tilde{\nu} = 539$ (vw), 351 (w), 196 (vs) cm$^{-1}$. ESI-MS (– mode, D$_2$O): m/z: 512 [B$_{12}$Br$_{11}$OH]$^{2-}$.
Figure S17: 11B NMR spectrum (128.39 MHz) of $[\text{NEt}_3\text{H}]_2[B_{12}\text{Br}_{11}\text{OH}]$ in CD$_3$CN at 298 K

Figure S18: Negative ESI MS spectrum of the $[B_{12}\text{Br}_{11}\text{OH}]^{2-}$ anion

Figure S19: IR (diamond ATR, top) and Raman (1000 scans, 300 mW, bottom) spectra of Na$_2[B_{12}\text{Br}_{11}\text{OH}]$
S2.4 Spectroscopic Data for the salts containing the \([\text{B}_{12}\text{Cl}_{11}\text{O-propyl}]^{2-}\) anion

A general synthetic procedure is described in the main paper. The yields given in the supplementary information refer to the amounts given in the general procedure in the main paper.

Sodium salt: (0.87 g, 1.39 mmol, 81 %) as a colorless solid. \(^1\)H NMR (400.13 MHz, D\(_2\)O, 298 K): \(\delta = 0.86\) (t, \(3^J_{\text{HH}} = 7.4\) Hz, 3H, \([\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)), 1.57 (tq, \(3^J_{\text{HH}} = 7.4\) Hz, 2H, \([\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)), 3.95 (t, \(3^J_{\text{HH}} = 7.4\) Hz, 2H, \([\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)). \(^{11}\)B NMR (128.38 MHz, D\(_2\)O, 298 K): \(\delta = -15.7\) (s, 1B, B1-Cl), –14.0 (s, 10B, B(2-11)-Cl), –7.4 (s, 1B, B12-O). \(^{13}\)C\{\(^1\)H\} NMR (100.61 MHz, D\(_2\)O, 298 K): \(\delta = 11.3\) [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\), 26.8 [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\), 70.9 [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\). IR (ATR): \(\tilde{\nu} = 3011\) (vw), 2970 (vw), 2937 (vw), 2878 (vw), 1461 (vw), 1435 (vw), 1403 (vw), 1318 (vw), 1264 (w, br), 1199 (vv), 1155 (m, br), 1024 (w), 957 (vs), 908 (vv), 749 (vw), 712 (vv), 624 (w), 575 (w), 540 (m, sh), 475 (vv), 462 (vv), 408 (vv) cm\(^{-1}\). Raman: \(\tilde{\nu} = 3009, 2920, 2875, 1449, 1415, 1307, 1027, 960, 712, 680, 388, 299, 238, 129\) cm\(^{-1}\). ESI-MS (– mode, D\(_2\)O): \(m/\zeta: 289\) [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\), 601 [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3} + \text{Na}\)].

Tetrabutylammonium salt: (0.42 g, 0.04 mmol, 24 %) as a colorless solid. \(^1\)H NMR (400.13 MHz, CD\(_3\)CN, 298 K): \(\delta = 0.89\) (t, \(3^J_{\text{HH}} = 7.4\) Hz, 3H, [\(\text{B}_{12}\text{Cl}_{11}\text{O(CH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)), 1.00 (t, \(3^J_{\text{HH}} = 7.4\) Hz, 2H, [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)), 3.82 (tq, \(3^J_{\text{HH}} = 7.4\) Hz, 2H, [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)), 1.50 (tq, \(3^J_{\text{HH}} = 7.4\) Hz, 2H, [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)), 1.71 (m, 16H, [\(\text{N(CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)), 3.11 (m, 16H, [\(\text{N(CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)), 3.93 (t, \(3^J_{\text{HH}} = 6.7\) Hz, 2H, [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)). \(^{13}\)C\{\(^1\)H\} NMR (100.61 MHz, CD\(_3\)CN, 298 K): \(\delta = 10.8\) [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\), 13.8 [\(\text{N((CH}_{2})_{2}\text{CH}_{3}]^{2-}\), 20.3 [\(\text{N((CH}_{2})_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\), 24.4 [\(\text{N(CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\), 26.6 [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\), 59.4 [\(\text{N(CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\), 68.3 [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\).

[C\(_6\)mim] salt: (0.35 g, 0.04 mmol, 23 %) as a colorless solid. \(^1\)H NMR (400.13 MHz, CD\(_3\)CN, 298 K): \(\delta = 0.90\) (t, \(3^J_{\text{HH}} = 7.3\) Hz, 3H, [\(\text{B}_{12}\text{Cl}_{11}\text{O(CH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)), 0.92 (t, \(3^J_{\text{HH}} = 6.7\) Hz, 3H, \(H10\)), 1.28-1.40 (m, 6H, \(H7-9\)), 1.49 (m, [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)), 1.85 (m, 2H, \(H6\)), 3.85 (s, 3H, \(H2\)), 3.93 (t, \(3^J_{\text{HH}} = 6.7\) Hz, 2H, [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\)), 4.14 (t, \(3^J_{\text{HH}} = 7.3\) Hz, 2H, \(H5\)), 7.37 (m, 2H, \(H3-4\)), 8.42 (s, 1H, \(H1\)). \(^{13}\)C\{\(^1\)H\} NMR (100.61 MHz, CD\(_3\)CN, 298 K): \(\delta = 10.8\) [\(\text{B}_{12}\text{Cl}_{11}\text{OCH}_{2}\text{CH}_{2}\text{CH}_{3}]^{2-}\), 14.2 [\(\text{C10}\)], 23.1 [\(\text{C9}\)], 26.4 [\(\text{C8}\)], 26.6
$[\text{B}_{12}\text{Cl}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2^-, \ 30.6 \ [C7], \ 31.8 \ [C6], \ 36.9 \ [C2], \ 50.6 \ [C5], \ 68.3 \ [\text{B}_{12}\text{Cl}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2^-, \ 123.3 \ [C4], \ 126.6 \ [C3], \ 136.8 \ [C1]$.

Figure S20: ^{11}B NMR spectrum (128.39 MHz) of $\text{Na}_2[\text{B}_{12}\text{Cl}_{11}\text{O-propyl}] \text{D}_2\text{O}$ at 298 K

Figure S21: ^1H NMR spectrum (400.13 MHz) of $\text{Na}_2[\text{B}_{12}\text{Cl}_{11}\text{O-propyl}]$ in D_2O at 298 K
Figure S22: 13C \{1H\} NMR spectrum (100.61 MHz) of Na$_2$[B$_{12}$Cl$_{11}$O-propyl] in CD$_3$CN at 298 K

Figure S23: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{\text{CH}} = 145$ Hz) of Na$_2$[B$_{12}$Cl$_{11}$O-propyl] in D$_2$O at 298 K
Figure S24: 1H NMR spectrum (400.13 MHz) of [NBu$_4$][B$_{12}$Cl$_{11}$O-propyl] in CD$_3$CN at 298 K

Figure S25: 13C 1H NMR spectrum (100.61 MHz) of [NBu$_4$][B$_{12}$Cl$_{11}$O-propyl] in CD$_3$CN at 298 K
Figure S26: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{CH} = 145$ Hz) of $[\text{NBu}_2][\text{B}_{12}\text{Cl}_{11}\text{O-propyl}]$ in CD$_3$CN at 298 K

Figure S27: 1H NMR spectrum (400.13 MHz) of $[\text{C}_6\text{mim}]_2[\text{B}_{12}\text{Cl}_{11}\text{O-propyl}]$ in CD$_3$CN at 298 K
Figure S28: 13C {1H} NMR spectrum (100.61 MHz) of [C$_6$mim]$_2$[B$_{12}$Cl$_{11}$O-propyl] in CD$_3$CN at 298 K

Figure S29: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{CH} = 145$ Hz) of [C$_6$mim]$_2$[B$_{12}$Cl$_{11}$O-propyl] in CD$_3$CN at 298 K
Figure S30: Negative ESI MS spectrum of the [B_{12}Cl_{11}O-propyl]^{2-} anion

Figure S31: IR (diamond ATR, top) and Raman (1000 scans, 300 mW, bottom) spectra of Na_{2}[B_{12}Cl_{11}O-propyl]
S2.5 Spectroscopic Data for the salts containing the \([\text{B}_{12}\text{C}_{11}\text{O-octyl}]^2\) anion

A general synthetic procedure is described in the main paper. The yields given in the supplementary information refer to the amounts given in the general procedure in the main paper.

Sodium salt: (1.01 g, 1.45 mmol, 84 %) as a colorless solid. \(^1\)H NMR (400.13 MHz, D\(_2\)O, 298 K): \(\delta = 0.86 \) (t, \(3J_{\text{HH}} = 8.2\) Hz, 3H, \([\text{B}_{12}\text{Cl}_{11}\text{O}(\text{CH}_2)_2\text{CH}_3]^2\))\), 1.30 (m, 10H, \([\text{B}_{12}\text{Cl}_{11}\text{O}(\text{CH}_2)_2\text{CH}_2\text{C}_2\text{H}_3]^2\)), 1.58 (m, 2H, \([\text{B}_{12}\text{Cl}_{11}\text{OCH}_2\text{CH}_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\)), 4.01 (t, \(3J_{\text{HH}} = 7.1\) Hz, 2H, \([\text{B}_{12}\text{Cl}_{11}\text{OCH}_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\)). \(^{13}\)B NMR (128.38 MHz, D\(_2\)O, 298 K): \(\delta = -15.7\) (s, 1B, B1-Cl), –14.0 (s, 10B, B(2-11)-Cl), –7.4 (s, 1B, B12-O)). \(^{13}\)C\(^{1}\)H NMR (100.61 MHz, D\(_2\)O, 298 K): \(\delta = 15.4\) \([\text{B}_{12}\text{Cl}_{11}\text{O}(\text{CH})_2\text{CH}_3]^2\), 69.3 \([\text{B}_{12}\text{Cl}_{11}\text{OCH}_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\). IR (ATR): \(\tilde{\nu} = 2956\) (vW), 2927 (vW), 2856 (vW), 2162 (vW), 1464 (vW), 1432 (vW), 1307 (vW), 1202 (w), 1179 (w), 1038 (m, br), 960 (w), 893 (vW), 816 (vW), 753 (vW), 712 (vW), 625 (vW), 580 (vW), 541 (m, sh), 470 (vW), 457 (vW) cm\(^{-1}\). Raman: \(\tilde{\nu} = 3005, 2916, 2860, 1444, 1416, 1307, 1038, 960, 713, 676, 556, 502, 492, 343, 297, 128, \) cm\(^{-1}\). ESI-MS (– mode, D\(_2\)O): \(m/z\): 324 \([\text{B}_{12}\text{Cl}_{11}\text{O}(\text{CH}_2)_2\text{CH}_3]^2\), 688 \([\text{B}_{12}\text{Cl}_{11}\text{O}(\text{CH}_2)_2\text{CH}_3 + \text{K}]\).

Tetrabutylammonium salt: (0.42 g, 0.04 mmol, 24 %) as a colorless solid. \(^1\)H NMR (400.13 MHz, CD\(_3\)CN, 298 K): \(\delta = 0.91\) (t, \(3J_{\text{HH}} = 7.2\) Hz, 3H, \([\text{B}_{12}\text{Cl}_{11}\text{O}(\text{CH}_2)_2\text{CH}_3]^2\)), 0.99 (t, \(3J_{\text{HH}} = 7.4\) Hz, 24H, \([\text{N}((\text{CH}_2)_3\text{CH}_3)]^2\)), 1.31 (m, 10H, \([\text{B}_{12}\text{Cl}_{11}\text{O}(\text{CH}_2)_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\)), 1.39 (m, 16H, \([\text{N}(\text{CH}_2)_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\)), 1.48 (m, 2H, \([\text{B}_{12}\text{Cl}_{11}\text{OCH}_2\text{CH}_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\)), 1.63 (m, 16H, \([\text{N}(\text{CH}_2)_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\)), 3.11 (m, 16H, \([\text{N}(\text{CH}_2\text{CH}_2\text{CH}_2\text{C}_2\text{H}_3]^2\)), 3.97 (t, \(3J_{\text{HH}} = 6.8\) Hz, 2H, \([\text{B}_{12}\text{Cl}_{11}\text{OCH}_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\)). \(^{13}\)C\(^{1}\)H NMR (100.61 MHz, CD\(_3\)CN, 298 K): \(\delta = 13.8\) \([\text{N}((\text{CH}_2)_2\text{CH}_3)]^2\), 14.4 \([\text{B}_{12}\text{Cl}_{11}\text{O}(\text{CH})_2\text{CH}_3]^2\), 20.3 \([\text{N}((\text{CH}_2)_2\text{CH}_2\text{C}_2\text{H}_3]^2\)), 24.4 \([\text{N}((\text{CH}_2\text{CH}_2\text{CH}_2\text{C}_2\text{H}_3]^2\)), 59.4 \([\text{N}((\text{CH}_2\text{CH}_2\text{CH}_2\text{C}_2\text{H}_3]^2\)), 66.6 \([\text{B}_{12}\text{Cl}_{11}\text{OCH}_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\).

[C\(_4\)mim] salt: (0.35 g, 0.04 mmol, 23 %) as a colorless solid. \(^1\)H NMR (400.13 MHz, CD\(_3\)CN, 298 K): \(\delta = 0.90\) (t, \(3J_{\text{HH}} = 7.0\) Hz, 3H, \([\text{B}_{12}\text{Cl}_{11}\text{O}(\text{CH}_2)_2\text{CH}_3]^2\)), 0.92 (t, \(3J_{\text{HH}} = 6.7\) Hz, 3H, H10), 1.28–1.40 (m, 10H \([\text{B}_{12}\text{Cl}_{11}\text{O(O-C(\text{CH}_2)_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\))), 1.28–1.40 (m, 6H, H7-9), 1.49 (m, \([\text{B}_{12}\text{Cl}_{11}\text{OCH}_2\text{CH}_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\)), 1.85 (m, 2H, H5), 3.85 (s, 3H, H2), 3.93 (t, \(3J_{\text{HH}} = 6.7\) Hz, 2H, \([\text{B}_{12}\text{Cl}_{11}\text{OCH}_2\text{CH}_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\)), 4.14 (t, \(3J_{\text{HH}} = 7.3\) Hz, 2H, H5), 7.37 (m, 2H, H3-4), 8.42 (s, 1H, H1). \(^{13}\)C\(^{1}\)H NMR (100.61 MHz, CD\(_3\)CN, 298 K): \(\delta = 14.2\) \([\text{C}]^{10}\), 14.4 \([\text{B}_{12}\text{Cl}_{11}\text{O}(\text{CH})_2\text{CH}_3]^2\), 23.1 \([\text{C}]^9\), 26.4 \([\text{C}]^8\), 30.6 \([\text{C}]^7\), 31.8 \([\text{C}]^6\), 36.9 \([\text{C}]^2\), 50.6 \([\text{C}]^5\), 66.7 \([\text{B}_{12}\text{Cl}_{11}\text{OCH}_2(\text{CH}_2)_2\text{C}_2\text{H}_3]^2\), 123.3 \([\text{C}]^4\), 126.6 \([\text{C}]^3\), 136.8 \([\text{C}]^1\).
Figure S32: 1H NMR spectrum (400.13 MHz) of Na$_2$[B$_{12}$Cl$_{11}$O-octyl] in D$_2$O at 298 K

Figure S33: 13C {1H} NMR spectrum (100.61 MHz) of Na$_2$[B$_{12}$Cl$_{11}$O-octyl] in CD$_3$CN at 298 K
Figure S34: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{CH} = 145$ Hz) of Na$_2$[B$_{12}$Cl$_{11}$O-octyl] in D$_2$O at 298 K

Figure S35: 1H NMR spectrum (400.13 MHz) of [NBu$_4$]$_2$[B$_{12}$Cl$_{11}$O-octyl] in CD$_3$CN at 298 K
Figure S36: 13C 1H NMR spectrum (100.61 MHz) of $[\text{NBu}_4]_2[B_{12}\text{Cl}_{11}\text{O-octyl}]$ in CD$_3$CN at 298 K

Figure S37: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{CH}=145$ Hz) of $[\text{NBu}_4]_2[B_{12}\text{Cl}_{11}\text{O-octyl}]$ in CD$_3$CN at 298 K
Figure S38: 1H NMR spectrum (400.13 MHz) of [C$_6$ mim]$_2$[B$_{12}$ Cl$_{11}$ O-octyl] in CD$_3$CN at 298 K

Figure S39: 13C {1H} NMR spectrum (100.61 MHz) of [C$_6$ mim]$_2$[B$_{12}$ Cl$_{11}$O-octyl] in CD$_3$CN at 298 K
Figure S40: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{CH} = 145$ Hz) of [C$_6$mim]$_2$[B$_{12}$Cl$_{11}$O-octyl] in CD$_3$CN at 298 K

Figure S41: Negative ESI MS spectrum of the [B$_{12}$Cl$_{11}$O-octyl]$^{2-}$ anion
S2.6 Spectroscopic Data of the salts containing the $[\text{B}_{12}\text{Cl}_{11}\text{O-dodecyl}]^{2-}$ anion

A general synthetic procedure is described in the main paper. The yields given in the supplementary information refer to the amounts given in the general procedure in the main paper.

Sodium salt: (1.22 g, 1.62 mmol, 94 %) as a colorless solid. 1H NMR (400.13 MHz, D_2O, 298 K): $\delta = 0.90$ (t, $^3J_{HH} = 7.3$ Hz, 3H, $[\text{B}_{12}\text{Cl}_{11}\text{O(CH}_2\text{)}_{11}\text{CH}_3]^{2-}$), 1.30 (m, 18H, $[\text{B}_{12}\text{Cl}_{11}\text{O(CH}_2\text{)}_{2}(\text{CH}_2\text{)}_9\text{CH}_3]^{2-}$), 1.61 (m, 2H, $[\text{B}_{12}\text{Cl}_{11}\text{OCH}_2\text{CH}_2(\text{CH}_2)_9\text{CH}_3]^{2-}$), 4.03 (t, $^3J_{HH} = 7.1$ Hz, 2H, $[\text{B}_{12}\text{Cl}_{11}\text{OCH}_2(\text{CH}_2)_{10}\text{CH}_3]^{2-}$). 11B NMR (128.38 MHz, D_2O, 298 K): $\delta = -15.7$ (s, 1B, $\text{B}1$-Cl), -14.0 (s, 10B, $\text{B}(2-11)$-Cl), -7.4 (s, 1B, $\text{B}12$-O)). 13C{1H} NMR (100.61 MHz, D_2O, 298 K): $\delta = 15.4$ [B$_{12}$Cl$_{11}$O(CH$_2$)$_{11}$CH$_3$]$^{2-}$, 68.8 [B$_{12}$Cl$_{11}$OCH$_2$(CH$_2$)$_{10}$CH$_3$]$^{2-}$. IR (ATR): $\tilde{\nu} = 2923$ (w), 2853 (vw), 2162 (v), 1464 (v), 1432 (v), 1401 (v), 1377 (v), 1315 (v), 1202 (w, br), 1024 (m, br), 951 (w), 896 (v), 708 (v), 622 (v), 579 (v), 539 (m, sh), 504 (v), 473 (v), 418 (v) cm$^{-1}$. Raman: $\tilde{\nu} = 3005$, 2918, 2846, 1438, 1416, 1302, 1063, 958, 711, 677, 387, 298, 130 cm$^{-1}$. ESI-MS (− mode, D_2O): m/z: 352 [B$_{12}$Cl$_{11}$O(CH$_2$)$_{11}$CH$_3$]$^{2-}$, 743 [B$_{12}$Cl$_{11}$O(CH$_2$)$_{11}$CH$_3$ + K$^-$].
Tetrabutylammonium salt: (0.42 g, 0.04 mmol, 24 %) as a colorless solid. 1H NMR (400.13 MHz, CD$_3$CN, 298 K): $\delta = 0.92$ (t, $^3J_{HH} = 6.5$ Hz, 3H, [B$_{12}$Cl$_{11}$O(CH$_2$)$_{11}$CH$_3$]2), 1.00 (t, $^3J_{HH} = 7.4$ Hz, 24H, [N((CH$_2$)$_3$CH)$_4$]$^+$), 1.27-1.33 (m, 18H, [B$_{12}$Cl$_{11}$O(CH$_2$)$_2$(CH$_2$)$_2$CH$_3$]2), 1.39 (m, $^3J_{HH} = 7.4$ Hz, 16H, [N((CH$_2$)$_2$(CH$_2$)$_2$CH)$_3$]$^+$), 1.45-1.52 (m, 2H, [B$_{12}$Cl$_{11}$OC(H)$_2$C(H)$_2$(CH$_2$)$_2$CH]$^-$), 1.63 (m, 16H, [N(CH$_2$)$_2$CH$_2$CH$_3$)$_4$]$^+$), 3.11 (m, 16H, [N(CH$_2$)$_2$CH$_2$CH$_3$)$_4$]$^+$), 3.12 (m, 16H, [N(CH$_2$)$_2$CH$_2$CH$_3$)$_4$]$^+$), 13C{1H} NMR (100.61 MHz, CD$_3$CN, 298 K): $\delta = 14.1$ [N((CH$_2$)$_3$CH)$_4$]$^+$, 14.4 [B$_{12}$Cl$_{11}$O(CH$_2$)$_{11}$CH$_3$]2 $^-$, 20.3 [N((CH$_2$)$_2$CH$_2$CH$_3$)$_4$]$^+$, 24.4 [N(CH$_2$)$_2$CH$_2$CH$_3$)$_4$]$^+$, 59.4 [N(CH$_2$)$_2$CH$_2$CH$_3$)$_4$]$^+$, 66.7 [B$_{12}$Cl$_{11}$OC(H)$_2$C(H)$_2$(CH$_2$)$_2$CH]$^-$.

[C$_6$mim] salt: (0.39 g, 0.04 mmol, 28 %) as a colorless solid. 1H NMR (400.13 MHz, CD$_3$CN, 298 K): $\delta = 0.90$ (m, 3H, [B$_{12}$Br$_{11}$O(CH$_2$)$_{11}$CH$_3$]2), 0.92 (m, 3H, H10) 1.27-1.32 (m, 18H, [B$_{12}$Br$_{11}$O(CH)$_2$(CH)$_2$(CH)$_2$CH$_3$]2), 1.32-1.38 (m, 6H, H7-9), 1.48 (m, 2H, [B$_{12}$Br$_{11}$OC(H)$_2$C(H)$_2$(CH)$_2$(CH)$_2$CH]$^-$), 1.85 (m, 2H, H6), 3.85 (s, 3H, H2), 3.97 (t, $^3J_{HH} = 6.3$ Hz, 2H, [B$_{12}$Br$_{11}$OC(H)$_2$(CH)$_2$(CH)$_2$(CH)$_2$CH]$^-$), 4.14 (t, $^3J_{HH} = 7.3$ Hz, 2H, H5), 7.37 (m, 2H, H3-4), 8.42 (s, 1H, H1). 13C{1H} NMR (100.61 MHz, CD$_3$CN, 298 K): $\delta = 13.1$ [C10], 14.4 [B$_{12}$Cl$_{11}$O(CH)$_2$(CH)$_2$(CH)$_2$(CH)$_2$CH]$^-$, 23.1 [C9], 26.4 [C8], 30.6 [C7], 31.8 [C6], 36.9 [C2], 50.6 [C5], 68.3 [B$_{12}$Cl$_{11}$OC(H)$_2$(CH)$_2$(CH)$_2$(CH)$_2$CH]$^-$, 123.3 [C4], 126.6 [C3], 136.8 [C1].

Figure S43: 1H NMR spectrum (400.13 MHz) of Na$_2$[B$_{12}$Cl$_{11}$O-dodecyl] in D$_2$O at 298 K
Figure S44: ^{13}C {^1H} NMR spectrum (100.61 MHz) of $\text{Na}_2[\text{B}_{12}\text{Cl}_{11}\text{O-dodecyl}]$ in D_2O at 298 K

Figure S45: ^1H, ^{13}C correlation (400.13 MHz, HSQC, optimized for $J_{\text{CH}} = 145$ Hz) of $\text{Na}_2[\text{B}_{12}\text{Cl}_{11}\text{O-dodecyl}]$ in D_2O at 298 K
Figure S46: 1H NMR spectrum (400.13 MHz) of $[\text{NBu}_4]_2[\text{B}_{12}\text{Cl}_{11}\text{O-dodecyl}]$ in CD$_3$CN at 298 K

Figure S47: 13C {1H} NMR spectrum (100.61 MHz) of $[\text{NBu}_4]_2[\text{B}_{12}\text{Cl}_{11}\text{O-dodecyl}]$ in CD$_3$CN at 298 K
Figure S48: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{CH} = 145$ Hz) of [NBu$_4$]$_2$[B$_{12}$Cl$_{11}$O-dodecyl] in CD$_3$CN at 298 K

Figure S49: 1H NMR spectrum (400.13 MHz) of [C$_6$mim]$_2$[B$_{12}$Cl$_{11}$O-dodecyl] in CD$_3$CN at 298 K
Figure S50: 13C 1H NMR spectrum (100.61 MHz) of $[\text{C}_6\text{mim}]_2[\text{B}_{12}\text{Cl}_{11}\text{O-dodecyl}]$ in CD$_3$CN at 298 K

Figure S51: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{\text{CH}} = 145$ Hz) of $[\text{C}_6\text{mim}]_2[\text{B}_{12}\text{Cl}_{11}\text{O-dodecyl}]$ in CD$_3$CN at 298 K
Figure S52: Negative ESI MS spectrum of the \([B_{12}Cl_{11}O\text{-dodecyl}]^{-}\) anion

Figure S53: IR (diamond ATR, top) and Raman (1000 scans, 300 mW, bottom) spectra of \(\text{Na}_2[B_{12}Cl_{11}O\text{-dodecyl}]\)
S2.7 Spectroscopic Data for the salts containing the \([\text{B}_{12}\text{Br}_{11}\text{O-propyl}]^2-\) anion

A general synthetic procedure is described in the main paper. The yields given in the supplementary information refer to the amounts given in the general procedure in the main paper.

Sodium salt: (0.81 g, 0.73 mmol, 78 %) as a colorless solid. \(^1\)H NMR (400.13 MHz, D\(_2\)O, 298 K): \(\delta = 0.86\) (t, \(3J_{HH} = 7.4\) Hz, 3H, \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\)), 1.60 (m, 2H, \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\)), 4.03 (t, \(3J_{HH} = 7.5\) Hz, 2H, \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\)); \(^{11}\)B NMR (128.38 MHz, D\(_2\)O, 298 K): \(\delta = -16.7\) (s, 1B, B1-Br), -14.4 (s, 10B, B(2-11)-Br), -4.4 (s, 1B, B12-O)). \(^{13}\)C\({}^{1\text{H}}\) NMR (100.61 MHz, D\(_2\)O, 298 K): \(\delta = 11.3\) \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\), 27.1 \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\), 70.8 \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\). IR (ATR): \(\tilde{\nu} = 3002\) (vw), 2967 (vw), 2323 (vw), 2188 (vw), 2162 (vw), 2090 (vw), 1980 (vw), 1463 (w), 1433 (w), 1413 (w), 1401 (w), 1315 (w), 1262 (w), 1211 (m, sh), 1189 (w), 1143 (m), 1049 (s, sh), 1020 (s, sh), 956 (m), 889 (w), 739 (vw), 708 (w), 674 (vw), 556 (vw), 539 (w), 485(w), 453 (m, sh), 432 (vw), 417 (vw) cm\(^{-1}\). Raman: \(\tilde{\nu} = 3000, 2913, 2745, 1449, 1414, 1313, 1055, 956, 709, 676, 388, 346, 311, 193\) cm\(^{-1}\). ESI-MS (– mode, D\(_2\)O): \(m/z: 534\) \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\).

Tetrabutylammonium salt: (0.42 g, 0.04 mmol, 24 %) as a colorless solid. \(^1\)H NMR (400.13 MHz, CD\(_3\)CN, 298 K): \(\delta = 0.90\) (t, \(3J_{HH} = 7.4\) Hz, 3H, \([\text{B}_{12}\text{Br}_{11}\text{O(CH}_2_2\text{CH}_3]^2-\)), 1.00 (t, \(3J_{HH} = 7.4\) Hz, 24H, \([\text{N}((\text{CH}_2)_2\text{CH}_3)_4]^+\)), 1.38 (m, 16H, \([\text{N}((\text{CH}_2)_2(\text{CH}_2\text{CH}_3)_4]^+\)), 1.50 (m, 2H, \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\)), 1.63 (m, 16H, \([\text{N}((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3)_4]^+\)), 3.11 (m, 16H, \([\text{N}((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3)_4]^+\)), 4.02 (t, \(3J_{HH} = 6.7\) Hz, 2H, \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\)). \(^{13}\)C\({}^{1\text{H}}\) NMR (100.61 MHz, CD\(_3\)CN, 298 K): \(\delta = 10.9\) \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\), 13.8 \([\text{N}((\text{CH}_2)_2\text{CH}_3)_4]^+\), 20.3 \([\text{N}((\text{CH}_2)_2(\text{CH}_2\text{CH}_3)_4]^+\), 24.3 \([\text{N}(\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3)_4]^+\), 26.6 \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\), 59.4 \([\text{N}((\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3)_4]^+\), 68.2 \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\).

[C\(_6\text{mim}\)] salt: (0.35 g, 0.04 mmol, 23 %) as a colorless solid. \(^1\)H NMR (400.13 MHz, CD\(_3\)CN, 298 K): \(\delta = 0.90\) (t, \(3J_{HH} = 6.7\) Hz, 3H, \([\text{B}_{12}\text{Br}_{11}\text{O(CH}_2_2\text{CH}_3]^2-\)), 0.92 (t, \(3J_{HH} = 7.4\) Hz, 3H, H10), 1.28-1.40 (m, 6H, H7-9), 1.49 (m, \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\)), 1.85 (m, 2H, H6), 3.85 (s, 3H, H2), 4.06 (t, \(3J_{HH} = 6.7\) Hz, 2H, \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\)), 4.14 (t, \(3J_{HH} = 7.3\) Hz, 2H, H5), 7.37 (m, 2H, H3-4), 8.42 (s, 1H, H1). \(^{13}\)C\({}^{1\text{H}}\) NMR (100.61 MHz, CD\(_3\)CN, 298 K): \(\delta = 10.9\) \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\), 14.2 \([\text{C}_{10}]\), 23.1 \([\text{C}_9]\), 26.4 \([\text{C}_8]\), 26.6 \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\), 30.6 \([\text{C}_7]\), 31.8 \([\text{C}_6]\), 36.9 \([\text{C}_2]\), 50.6 \([\text{C}_5]\), 68.1 \([\text{B}_{12}\text{Br}_{11}\text{OCH}_2\text{CH}_2\text{CH}_3]^2-\), 123.3 \([\text{C}_4]\), 126.6 \([\text{C}_3]\), 136.8 \([\text{C}_1]\).
Figure S54: 11B NMR spectrum (128.39 MHz) of Na$_2$[B$_{12}$Br$_{11}$O-propyl] D$_2$O at 298 K

Figure S55: 11B-11B-COSY NMR spectrum (128.38 MHz) of Na$_2$[B$_{12}$Br$_{11}$O-propyl] in D$_2$O at 298 K
Figure S56: 1H,1B correlation (400.13 MHz, HSQC, optimized for $J_{BH} = 100$ Hz) of Na$_2$[B$_{12}$Br$_{11}$O-propyl] in D$_2$O at 298 K

Figure S57: 1H NMR spectrum (400.13 MHz) of Na$_2$[B$_{12}$Br$_{11}$O-propyl] in D$_2$O at 298 K
Figure S58: $^{13}\text{C} \{^1\text{H}\}$ NMR spectrum (100.61 MHz) of Na$_2$[B$_{12}$Br$_{11}$O-propyl] in D$_2$O at 298 K

Figure S59: ^1H, ^{13}C correlation (400.13 MHz, HSQC, optimized for $J_{\text{CH}} = 145$ Hz) of Na$_2$[B$_{12}$Br$_{11}$O-propyl] in D$_2$O at 298 K
Figure S60: 1H NMR spectrum (400.13 MHz) of $[\text{NBu}_4]_2[B_{12}\text{Br}_{11}\text{O-propyl}]$ in CD$_3$CN at 298 K

Figure S61: 13C (1H) NMR spectrum (100.61 MHz) of $[\text{NBu}_4]_2[B_{12}\text{Br}_{11}\text{O-propyl}]$ in CD$_3$CN at 298 K
Figure S62: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{CH} = 145$ Hz) of [NBu$_4$]$_2$[B$_{12}$Br$_{11}$O-propyl] in CD$_3$CN at 298 K

Figure S63: 1H NMR spectrum (400.13 MHz) of [C$_6$mim]$_2$[B$_{12}$Br$_{11}$O-propyl] in CD$_3$CN at 298 K
Figure S64: 13C {1H} NMR spectrum (100.61 MHz) of $[C_6\text{mim}]_2[B_{12}\text{Br}_{11}O-$propyl] in CD$_3$CN at 298 K

Figure S65: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{\text{CH}} = 145$ Hz) of $[C_6\text{mim}]_2[B_{12}\text{Br}_{11}O-$propyl] in CD$_3$CN at 298 K
Figure S66: Negative ESI MS spectrum of the $[\text{B}_{12}\text{Br}_{11}\text{O-propyl}]^{2-}$ anion

Figure S67: IR (diamond ATR, top) and Raman (1000 scans, 300 mW, bottom) spectra of Na$_2$[B$_{12}$Br$_{11}$O-propyl]

S2.8 Spectroscopic Data for salts containing the $[\text{B}_{12}\text{Br}_{11}\text{O-octyl}]^{2-}$ anion
A general synthetic procedure is described in the main paper. The yields given in the supplementary information refer to the amounts given in the general procedure in the main paper.

Sodium salt: (0.87 g, 0.74 mmol, 79 %) as a colorless solid. 1H NMR (400.13 MHz, D$_2$O, 298 K): $\delta = 0.86$ (t, $^3J_{HH} = 7.1$ Hz, 3H, [B$_{12}$Br$_{11}$O(CH$_2$)$_2$$\cdot$$\cdot$$\cdotCH_3$]$^{2-}$), 1.30 (m, 10H, [B$_{12}Br_{11}$O(CH$_2$)$_2$$\cdot$$\cdot$$\cdotCH_3$]$^{2-}$), 1.59 (m, 2H, B$_{12}Br_{11}OCH_2CH_2$(CH$_2$)$_2CH_3$]$^{2-}$), 4.07 (t, $^3J_{HH} = 7.1$ Hz, 2H, [B$_{12}$Br$_{11}$OCH$_2$(CH$_2$)$_6$CH$_3$]$^{2-}$). 11B NMR (128.38 MHz, D$_2$O, 298 K): $\delta = -16.7$ (s, 1B, B1-Br), –14.4 (s, 10B, B(2-11)-Br), –4.4 (s, 1B, B12-O)). 13C 1H NMR (100.61 MHz, D$_2$O, 298 K): $\delta = 15.5$ [B$_{12}$Br$_{11}$O(CH)$_2$CH$_3$]$^{2-}$], 69.3 [B$_{12}$Br$_{11}$OCH$_2$(CH$_2$)$_6$CH$_3$]$^{2-}$]. IR (ATR): $\tilde{\nu} = 2925$ (m), 2854 (m), 2164 (vw), 1988 (vw), 1465 (w), 1433 (w.), 1401 (w), 1316 (w), 1177 (s, sh), 1017 (vs, sh), 1002 (vs, sh), 985 (s, sh), 956 (w), 814 (wv), 712 (w), 673 (w), 605 (w), 544 (w), 506 (w), 485 (w), 453 (vs, sh), 421 (w) cm$^{-1}$. Raman: $\tilde{\nu} = 3001, 2915, 1438, 1413, 1302, 1040, 956, 711, 676, 347, 311, 196$ cm$^{-1}$. ESI-MS (– mode, D$_2$O): m/z: 569 [B$_{12}$Br$_{11}$O(CH$_2$)$_2$CH$_3$]$^{2-}$.

Tetra-butylammonium salt: (0.42 g, 0.04 mmol, 24 %) as a colorless solid. 1H NMR (400.13 MHz, CD$_3$CN, 298 K): $\delta = 0.91$ (t, $^3J_{HH} = 6.8$ Hz, 3H, [B$_{12}$Br$_{11}$O(CH$_2$)$_2$$\cdot$$\cdot$$\cdotCH_3$]$^{2-}$), 1.00 (t, $^3J_{HH} = 7.4$ Hz, 24H, [N((CH$_2$)$_2$CH$_3$)$_4$]$^{2-}$), 1.31 (m, 10H, [B$_{12}$Br$_{11}$O(CH$_2$)$_2$$\cdot$$\cdot$$\cdotCH_3$]$^{2-}$), 1.38 (m, 16H, [N((CH$_2$)$_2CH_2CH_3$)$_4$]$^{2-}$), 1.48 (m, 2H, [B$_{12}Br_{11}OCH_2CH_2$(CH$_2$)$_6CH_3$]$^{2-}$), 1.63 (m, 16H, [N(CH$_2CH_2CH_2CH_3$)$_4$]$^{2-}$), 3.11 (m, 16H, N(CH$_2CH_2CH_2CH_3$)$_4$), 4.06 (t, $^3J_{HH} = 6.8$ Hz, 2H, [B$_{12}$Br$_{11}$OCH$_2$(CH$_2$)$_6$CH$_3$]$^{2-}$). 13C 1H NMR (100.61 MHz, CD$_3$CN, 298 K): $\delta = 14.4$ [B$_{12}$Br$_{11}$O(CH)$_2$CH$_3$]$^{2-}$], 13.8 [N((CH$_2$)$_2$CH$_3$)$_4$], 20.3 [N((CH$_2$)$_2$CH$_2$CH$_3$)$_4$], 24.4 [N(CH$_2$CH$_2$CH$_2$CH$_3$)$_4$], 59.4 [N(CH$_2$CH$_2$CH$_2$CH$_3$)$_4$], 66.6 [B$_{12}$Br$_{11}$OCH$_2$(CH$_2$)$_6$CH$_3$]$^{2-}$.

[C$_6$nmim] salt: (0.35 g, 0.04 mmol, 23 %) as a colorless solid. 1H NMR (400.13 MHz, CD$_3$CN, 298 K): $\delta = 0.90$ (t, $^3J_{HH} = 7.0$ Hz, 3H, [B$_{12}$Br$_{11}$O(CH$_2$)$_2$$\cdot$$\cdot$$\cdotCH_3$]$^{2-}$), 0.92 (t, $^3J_{HH} = 6.7$ Hz, 3H, H10) 1.28-1.40 (m, 10H [B$_{12}$Br$_{11}$O-(CH)$_2$2(CH$_2$)$_2$CH$_3$]$^{2-}$), 1.28-1.40 (m, 6H, H7-9), 1.49 (m, [B$_{12}$Br$_{11}$OCH$_2$CH$_2$(CH$_2$)$_6$CH$_3$]$^{2-}$), 1.85 (m, 2H, H6), 3.85 (s, 3H, H2), 4.06 (t, $^3J_{HH} = 6.7$ Hz, 2H, [B$_{12}$Br$_{11}$OCH$_2$(CH$_2$)$_6$CH$_3$]$^{2-}$), 4.14 (m, $^3J_{HH} = 7.3$ Hz, 2H, H5), 7.37 (m, 2H, H3-4), 8.42 (s, 1H, H1). 13C 1H NMR (100.61 MHz, CD$_3$CN, 298 K): $\delta = 14.4$ [B$_{12}$Br$_{11}$O(CH)$_2$CH$_3$]$^{2-}$], 14.2 [C10], 23.1 [C9], 26.4 [C8], 30.6 [C7], 31.8 [C6], 36.9 [C2], 50.6 [C5], 66.6 [B$_{12}$Br$_{11}$OCH$_2$(CH$_2$)$_6$CH$_3$]$^{2-}$], 123.3 [C4], 126.6 [C3], 136.8 [C1].
Figure S68: 1H NMR spectrum (400.13 MHz) of Na$_2$[B$_{12}$Br$_{11}$O-octyl] in D$_2$O at 298 K

Figure S69: 13C (1H) NMR spectrum (100.61 MHz) of Na$_2$[B$_{12}$Br$_{11}$O-octyl] in D$_2$O at 298 K
Figure S70: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{CH} = 145$ Hz) of Na$_2$[B$_{12}$Br$_{11}$O-octyl] in D$_2$O at 298 K.

Figure S71: 1H NMR spectrum (400.13 MHz) of [NBu$_4$]$_2$[B$_{12}$Br$_{11}$O-octyl] in D$_2$O at 298 K.
Figure S72: 13C {1H} NMR spectrum (100.61 MHz) of [NBu$_4$][B$_{12}$Br$_{11}$O-octyl] in CD$_3$CN at 298 K

Figure S73: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{	ext{CH}} = 145$ Hz) of [NBu$_4$][B$_{12}$Br$_{11}$O-octyl] in CD$_3$CN at 298 K
Figure S74: 1H NMR spectrum (400.13 MHz) of [C$_6$ mim]$_2$ [B$_{12}$ Br$_{11}$ O-octyl] in D$_2$O at 298 K

Figure S75: 13C 1H NMR spectrum (100.61 MHz) of [C$_6$ mim]$_2$ [B$_{12}$ Br$_{11}$ O-octyl] in CD$_3$CN at 298 K
Figure S76: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{\text{CH}} = 145$ Hz) of [C$_6$ mim][B$_{12}$Br$_{11}$O-octyl] in CD$_3$CN at 298 K

Figure S77: Negative ESI MS spectrum of the [B$_{12}$Br$_{11}$O-octyl]$^{2-}$ anion
S2.9 Spectroscopic Data for salts containing the [B_{12}Br_{11}O-dodecyl]^{2-} anion

A general synthetic procedure is described in the main paper. The yields given in the supplementary information refer to the amounts given in the general procedure in the main paper.

Sodium salt: (0.95 g, 0.77 mmol, 82 %) as a colorless solid. \(^1\)H NMR (400.13 MHz, D\(_2\)O, 298 K): \(\delta = 0.91 \ (t, \ J_{HH} = 7.0 \ \text{Hz}, \ 3\text{H}, \ [B_{12}Br_{11}O(CH_2)_{11}CH_3]^{2-})\), 1.31 (m, 18H, \([B_{12}Br_{11}O(CH_2)_2(CH_2)_9CH_3]^{2-}\)), 1.65 (m, 2H, \([B_{12}Br_{11}OCH_2CH_2(CH_2)_9CH_3]^{2-}\)), 4.13 (m, \ J_{HH} = 6.3 \ \text{Hz}, 2H, \([B_{12}Br_{11}OCH_2(CH_2)_{10}CH_3]^{2-}\)). \(^{11}\)B NMR (128.38 MHz, D\(_2\)O, 298 K): \(\delta = -16.6 \ \text{(s, 1B, } B 1-\text{Br}), -14.4 \ \text{(s, 10B, } B(2-11)-\text{Br}), -4.4 \ \text{(s, 1B, } B12-\text{O})\). \(^{13}\)C\(^{\{1\}H}\) NMR (100.61 MHz, D\(_2\)O, 298 K): \(\delta = 16.1 \ \text{[B}_{12}Br_{11}O(CH_2)_{11}CH_3]^{2-}, 69.3 \ \text{[B}_{12}Br_{11}OCH_2(CH_2)_{10}CH_3]^{2-}\}. \text{IR (ATR): } \tilde{\nu} = 3005 \ (w), 2923 \ (m, \ sh), 2852 \ (m, \ sh), 2190 \ (vw), 2164 \ (vw), 2050 \ (vw), 1985 \ (vw), 1923 \ (vw), 1464 \ (w), 1433 \ (m, \ sh), 1412 \ (m), 1401 \ (m), 1314 \ (w), 1188 \ (m, \ br), 1143 \ (m), 1001 \ (s, \ sh), 984 \ (vs, \ sh), 955 \ (s, \ sh), 807 \ (vw), 708 \ (m, \ sh), 672 \ (w), 605 \ (w), 578 \ (w), 533 \ (vw), 503 \ (vw), 452 \ (s, \ sh), 418 \ (w) \ \text{cm}^{-1}. \ \text{Raman: } \tilde{\nu} = 3000, 2914, 2851, 1440, 1414, 1304, 1055, 958, 709, 676, 343, 309, 194 \ \text{cm}^{-1}. \ \text{ESI-MS (} \text{– mode, } D_2O\): \(m/z: 597 \ [B_{12}Br_{11}O(CH%)_{11}CH_3]^{2-}\).
Tetrabutylammonium salt: (0.42 g, 0.04 mmol, 24 %) as a colorless solid. 1H NMR (400.13 MHz, CD$_3$CN, 298 K): $\delta = 0.91$ (t, $^3J_{HH} = 7.1$ Hz, 3H, [B$_{12}$Br$_{11}$O(CH$_2$)$_3$CH$_3$]$^{2-}$), 1.00 (m, 24H, [N((CH$_2$)$_3$CH$_3$)$_4$]$^+$/[N((CH$_2$)$_2$H(CH)$_2$)]$^-$), 1.31 (m, 18H, [B$_{12}$Br$_{11}$O(CH$_2$)$_2$(CH$_2$)$_3$CH$_3$]$^{2-}$), 1.39 (m, 16H, [N((CH$_2$)$_2$(CH)$_2$CH$_3$)$_3$]$^+$), 1.49 (m, 2H, [B$_{12}$Br$_{11}$OCH$_2$CH$_2$(CH)$_2$CH$_3$]$^{2-}$), 1.63 (m, 16H, [N(CH$_2$CH$_2$CH$_2$CH$_3$)$_4$]$^+$), 3.11 (m, 16H, [N((CH$_2$)$_3$CH$_3$)$_4$]$^+$), 4.06 (t, $^3J_{HH} = 6.7$ Hz, 2H, [B$_{12}$Br$_{11}$OCH$_2$CH$_2$(CH)$_2$]$_{10}$CH$_3$]$^{2-}$). 13C{1H} NMR (100.61 MHz, CD$_3$CN, 298 K): $\delta = 14.4$ [B$_{12}$Br$_{11}$O(CH$_2$)$_3$CH$_3$]$^{2-}$, 13.8 [N((CH$_2$)$_3$CH$_3$)$_4$]$^+$, 20.3 [N((CH$_2$)$_2$CH$_2$CH$_3$)$_4$]$^+$, 24.4 [N(CH$_2$CH$_2$CH$_2$CH$_3$)$_4$]$^+$, 59.4 [N(CH$_2$CH$_2$CH$_2$CH$_3$)$_3$]$^+$, 66.6 [B$_{12}$Br$_{11}$OCH$_2$CH$_2$(CH)$_2$]$_{10}$CH$_3$]$^{2-}$.

[C$_6$mim] salt: (0.39 g, 0.04 mmol, 28 %) as a colorless solid. 1H NMR (400.13 MHz, CD$_3$CN, 298 K): $\delta = 0.90$ (t, 3H, [B$_{12}$Br$_{11}$O(CH$_2$)$_3$CH$_3$]$^{2-}$), 0.92 (m, 3H, H10) 1.27-1.32 (m, 18H, [B$_{12}$Br$_{11}$O(CH$_2$)$_2$(CH)$_2$CH$_3$]$^{2-}$), 1.32-1.38 (m, 6H, H7-9), 1.48 (m, 2H, [B$_{12}$Br$_{11}$OCH$_2$CH$_2$(CH)$_2$CH$_3$]$^{2-}$), 1.85 (m, 2H, H6), 3.85 (s, 3H, H2), 4.05 (t, $^3J_{HH} = 6.3$ Hz, 2H, [B$_{12}$Br$_{11}$OCH$_2$CH$_2$(CH)$_2$]$_{10}$CH$_3$]$^{2-}$), 4.14 (t, $^3J_{HH} = 7.3$ Hz, 2H, H5), 7.37 (m, 2H, H3-4), 8.42 (s, 1H, H1). 13C{1H} NMR (100.61 MHz, CD$_3$CN, 298 K): $\delta = 14.4$ [B$_{12}$Br$_{11}$O(CH$_2$)$_3$CH$_3$]$^{2-}$, 14.2 [C10], 23.1 [C9], 26.4 [C8], 30.6 [C7], 31.8 [C6], 36.9 [C2], 50.6 [C5], 66.6 [B$_{12}$Br$_{11}$OCH$_2$CH$_2$(CH)$_2$]$_{10}$CH$_3$]$^{2-}$, 123.3 [C4], 126.6 [C3], 136.8 [C1].

Figure S79: 1H NMR spectrum (400.13 MHz) of Na$_2$[B$_{12}$Br$_{11}$O-dodecyl] in D$_2$O at 298 K
Figure S80: 13C {1H} NMR spectrum (100.61 MHz) of Na$_2$[B$_{12}$Br$_{11}$O-dodecyl] in D$_2$O at 298 K

Figure S81: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{\text{CH}} = 145$ Hz) of Na$_2$[B$_{12}$Br$_{11}$O-dodecyl] in D$_2$O at 298 K
Figure S82: 1H NMR spectrum (400.13 MHz) of $[\text{NBu}_4]_2[\text{B}_{12}\text{Br}_{11}\text{O-dodecyl}]$ in CD$_3$CN at 298 K

Figure S83: 13C 1H NMR spectrum (100.61 MHz) of $[\text{NBu}_4]_2[\text{B}_{12}\text{Br}_{11}\text{O-dodecyl}]$ in CD$_3$CN at 298 K
Figure S84: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{CH} = 145$ Hz) of [NBu$_4$][B$_{12}$Br$_{11}$O-dodecyl] in CD$_3$CN at 298 K

Figure S85: 1H NMR spectrum (400.13 MHz) of [C$_6$mim]$_2$[B$_{12}$Br$_{11}$O-dodecyl] in CD$_3$CN at 298 K
Figure S86: 13C (1H) NMR spectrum (100.61 MHz) of $[\text{C}_6\text{mim}]_2[\text{Br}_{12}\text{Br}_{11}\text{O-dodecyl}]$ in CD$_3$CN at 298 K

Figure S87: 1H, 13C correlation (400.13 MHz, HSQC, optimized for $J_{\text{CH}} = 145$ Hz) of $[\text{C}_6\text{mim}]_2[\text{Br}_{12}\text{Br}_{11}\text{O-dodecyl}]$ in CD$_3$CN at 298 K
Figure S88: Negative ESI MS spectrum of the $[\text{B}_{12}\text{Br}_{11}\text{O-dodecyl}]^{2-}$ anion

Figure S89: IR (diamond ATR, top) and Raman (1000 scans, 300 mW, bottom) spectra of $\text{Na}_2[\text{B}_{12}\text{Br}_{11}\text{O-dodecyl}]$
S2.10 Thermal analysis

Figure S90: Thermo gravimetical analysis of [NBu₄]₂[B₁₂Cl₁₁O-propyl] (solid graph) and [C₆mim]₂[B₁₂Cl₁₁O-propyl] (dashed graph)

Figure S91: Differential Scanning Calorimetry of [NBu₄]₂[B₁₂Cl₁₁O-propyl]
Figure S92: Differential Scanning Calorimetry of [C₆mim]₂[B₁₂Cl₁₁O-propyl]

Figure S93: Coupled thermo gravimetric – mass spectrometric analysis of [NBu₄]₂[B₁₂Cl₁₁O-propyl] (the first decomposition step belongs to the loss of the alkyl group at 350 °C after 750 s heating with 20 K/min. The second step belongs to both, the decomposition of the cation and the remaining cluster itself)
Figure S94: Thermo gravimetical analysis of [NBu$_4$]$_2$[B$_{12}$Cl$_{11}$O-octyl] (solid graph) and [C$_{6}$mim]$_2$[B$_{12}$Cl$_{11}$O-octyl] (dashed graph)

Figure S95: Differential Scanning Calorimetry of [NBu$_4$]$_2$[B$_{12}$Cl$_{11}$O-octyl]
Figure S96: Differential Scanning Calorimetry of [C₆mim]₂[B₁₂Cl₁₁O-octyl]

Figure S97: Coupled thermo gravimetric – mass spectrometric analysis of [NBu₄]₂[B₁₂Cl₁₁O-octyl] (the first decomposition step belongs to the loss of the alkyl group at 368 °C after 700 s heating with 20 K/min. The second step belongs to both, the decomposition of the cation and the remaining cluster itself)
Figure S98: Thermo gravimetrical analysis of [NBu$_4$]$_2$[B$_{12}$Cl$_{11}$O-dodecyl] (solid graph) and [C$_6$mim]$_2$[B$_{12}$Cl$_{11}$O-dodecyl] (dashed graph)

Figure S99: Differential Scanning Calorimetry of [NBu$_4$]$_2$[B$_{12}$Cl$_{11}$O-dodecyl]
Figure S100: Differential Scanning Calorimetry of [C₆mim]₂[B₁₂Cl₁₁O-dodecyl]

Figure S101: Coupled thermo gravimetric – mass spectrometric analysis of [NBu₄]₂[B₁₂Cl₁₁O-dodecyl] (the first decomposition step belongs to the loss of the alkyl group at 355 °C after 800 s heating with 20 K/min. The second step belongs to both, the decomposition of the cation and the remaining cluster itself)
Figure S102: Thermo gravimetical analysis of [NBu₄][B₁₂Br₁₁O-propyl] (solid graph) and [C₆mim]₂[B₁₂Br₁₁O-propyl] (dashed graph)

Figure S103: Differential Scanning Calorimetry of [NBu₄]₂[B₁₂Br₁₁O-propyl]
Figure S104: Differential Scanning Calorimetry of [C$_6$mim]$_2$[Br$_3$Br$_{11}$O-propyl]. The salt [C$_6$mim]$_2$[Br$_3$Br$_{11}$O-propyl]2 surprisingly shows two phase transitions of much higher intensity than for the melting process. Such behavior is uncommon but not unknown, as the examples K[HF$_2$] and Cs[HF$_2$] have shown (E. F. Westrum Jr, C. P. Landee, Y. Takahashi, M. Chavret, J. Chem. Thermodyn. 1978, 10, 835-846).

Figure S105: Thermo gravimetrical analysis of [NBu$_4$]$_2$[Br$_3$Br$_{11}$O-octyl] (solid graph) and [C$_6$mim]$_2$[Br$_3$Br$_{11}$O-octyl] (dashed graph)
Figure S106: Differential Scanning Calorimetry of [NBu₄]₂[B₁₂Br₁₁O-octyl]

Figure S107: Differential Scanning Calorimetry of [C₆mim]₂[B₁₂Br₁₁O-octyl]
Figure S108: Thermo gravimetrical analysis of $[\text{NBu}_4]_2[\text{B}_{12}\text{Br}_{11}\text{O-dodecyl}]$ (solid graph) and $[\text{C}_6\text{mim}]_2[\text{B}_{12}\text{Br}_{11}\text{O-dodecyl}]$ (dashed graph)

Figure S109: Differential Scanning Calorimetry of $[\text{NBu}_4]_2[\text{B}_{12}\text{Br}_{11}\text{O-dodecyl}]$
S2.11 Cyclic voltammetry

Figure S110: Cyclic voltammogram of [NBu₄]₂[B₁₂Cl₁₁O-octyl] in CH₃CN at room temperature with 0.1 M [NBu₄][AsF₆] as supporting electrolyte on a Pt-working electrode. This cyclic voltammogram is representative for all [NBu₄]₂[B₁₂X₁₁OR] salts (X = Cl, Br; R = H, propyl, octyl, dodecyl), because all measured compounds showed very similar voltammograms.

S2.12 Crystal structures

Figure S111: Part of the crystal structure of [PPh₄]₂[B₁₂Cl₁₁OH]
Figure S112: Part of the crystal structure of $\left[\text{PPh}_4\right]_2\left[\text{B}_{12}\text{Br}_{11}\text{OH}\right]$

Figure S113: Part of the crystal structure of $\left[\text{PPh}_4\right]_2\left[\text{B}_{12}\text{Cl}_{11}\text{O-propyl}\right]$
Figure S114: Part of the crystal structure of $[\text{PPh}_4]_2[\text{B}_{12}\text{Cl}_{11}\text{O-octyl}]$. The O-octyl group is disordered over two positions in 70:30 ratios.

Figure S115: Part of the crystal structure of $[\text{PPh}_4]_2[\text{B}_{12}\text{Br}_{11}\text{O-propyl}]\cdot\text{CH}_3\text{CN}$
Figure S116: Part of the crystal structure of \([\text{PPh}_4]_2[\text{B}_{12}\text{Br}_{11}\text{O-octyl}]\cdot\text{OEt}_2\)