Electronic Supplementary Information (ESI) for

Reduced graphene oxide anchored Cu(OH)$_2$ as high performance electrochemical supercapacitor
Atin Pramanik, Sandipan Maiti and Sourindra Mahanty*
Fuel Cell & Battery Division
CSIR-Central Glass & Ceramic Research Institute
Kolkata 700032 India
and CSIR-Network Institutes for Solar Energy (NISE), India

*Correspondence to be addressed to: mahanty@cgcri.res.in; s_mahanty@hotmail.com
Tel: +91-33-2322 3495 Fax: +91-33-2473 0957
Supporting Information

Fig. S1 X-ray diffractogram of the synthesized graphene oxide (GO). Two prominent peaks, observed at 25.2° and 42.1°, can be indexed to the characteristic reflections of from (002) and (100) planes respectively of rhombohedral GO (space group R-3m). This is in agreement with JCPDS data (File number 01-074-2329).

Fig. S2 Variation of specific capacitance (Cs) of Cu(OH)$_2$@RGO symmetric cell with increasing current density (0.05 A g$^{-1}$ to 5 A g$^{-1}$). At a current density of 0.05 A g$^{-1}$, a Cs value of 66 F g$^{-1}$ is observed. However, as the current density is increased, Cs is found to decrease gradually. Nonetheless, even at a high current density of 5 A g$^{-1}$, Cu(OH)$_2$@RGO shows a Cs of 16 F g$^{-1}$.

References