Influence of PNIPAm on log $K_f$ of a copolymerized 2,2'-bipyridine: revised bifunctional ligand for ratiometric metal-ion sensing

Justin O. Massing and Roy P. Planalp
Department of Chemistry, University of New Hampshire
Durham, NH 03824, United States

Supplementary Information

1. $^1$H and $^{13}$C NMR spectra  S2–S6
2. Potentiometric titrations  S7–S14
3. Van ‘t Hoff plots  S15–S18
Figure S1. Potentiometric titration of 1.0 mM TREN·3HCl with NaOH at 5 ºC in 0.1 M NaNO₃. Corresponding distribution diagram (inset).

Figure S2. Potentiometric titration of 1.0 mM TREN·3HCl with NaOH at 25 ºC in 0.1 M NaNO₃. Corresponding distribution diagram (inset).
Figure S3. Potentiometric titration of 1.0 mM TREN·3HCl with NaOH at 45 °C in 0.1 M NaNO₃. Corresponding distribution diagram (inset).

Figure S4. Potentiometric titration of 12.7 mM HNO₃ and equimolar (2.4 mM) TREN·3HCl and Ni(NO₃)₂·6H₂O with NaOH at 25 °C in 0.1 M NaNO₃. Corresponding distribution diagram (inset).
Figure S5. Potentiometric titration of equimolar (3.6 mM) TREN·3HCl and Cu(NO$_3$)$_2$·3H$_2$O with NaOH at 5 ºC in 0.1 M NaNO$_3$. Corresponding distribution diagram (inset).

Figure S6. Potentiometric titration of equimolar (3.6 mM) TREN·3HCl and Cu(NO$_3$)$_2$·3H$_2$O with NaOH at 25 ºC in 0.1 M NaNO$_3$. Corresponding distribution diagram (inset).
Figure S7. Potentiometric titration of equimolar (3.6 mM) TREN·3HCl and Cu(NO$_3$)$_2$·3H$_2$O with NaOH at 45 ºC in 0.1 M NaNO$_3$. Corresponding distribution diagram (inset).

Figure S8. Potentiometric titration of 7.7 mM HNO$_3$ and equimolar (2.4 mM) TREN·3HCl and Zn(NO$_3$)$_2$·6H$_2$O with NaOH at 25 ºC in 0.1 M NaNO$_3$. Corresponding distribution diagram (inset).
Figure S9. Potentiometric titration of 1.0 mM 1 and two equivalents of HNO$_3$ with NaOH at 5 °C in 0.1 M NaNO$_3$. Corresponding distribution diagram (inset).

Figure S10. Potentiometric titration of 1.9 mM 1 and three equivalents of HNO$_3$ with NaOH at 25 °C in 0.1 M NaNO$_3$. Corresponding distribution diagram (inset).
Figure S11. Potentiometric titration of 1.0 mM 1 and two equivalents of HNO₃ with NaOH at 45 ºC in 0.1 M NaNO₃. Corresponding distribution diagram (inset).

Figure S12. Potentiometric titration of equimolar (1.8 mM) 1, TREN·3HCl, and Ni(NO₃)₂·6H₂O with NaOH at 25 ºC in 0.1 M NaNO₃. Corresponding distribution diagram (inset).
Figure S13. Potentiometric titration of equimolar (1.0 mM) 1, TREN·3HCl, and Cu(NO$_3$)$_2$·3H$_2$O with NaOH at 5 °C in 0.1 M NaNO$_3$. Corresponding distribution diagram (inset).

Figure S14. Potentiometric titration of equimolar (1.8 mM) 1, TREN·3HCl, and Cu(NO$_3$)$_2$·3H$_2$O with NaOH at 25 °C in 0.1 M NaNO$_3$. Corresponding distribution diagram (inset).
Figure S15. Potentiometric titration of equimolar (1.0 mM) 1, TREN·3HCl, and Cu(NO$_3$)$_2$·3H$_2$O with NaOH at 45 °C in 0.1 M NaNO$_3$. Corresponding distribution diagram (inset).

Figure S16. Potentiometric titration of equimolar (1.8 mM) 1, TREN·3HCl, and Zn(NO$_3$)$_2$·6H$_2$O with NaOH at 25 °C in 0.1 M NaNO$_3$. Corresponding distribution diagram (inset).
Figure S17. Van 't Hoff plot for TRENH⁺.

Figure S18. Van 't Hoff plot for TRENH₂²⁺.
Figure S19. Van ’t Hoff plot for TRENH$_3^{3+}$.

Figure S20. Van ’t Hoff plot for CuTREN$_2^{2+}$.
Figure S21. Van 't Hoff plot for CuTRENH$^{3+}$.

Figure S22. Van 't Hoff plot for $\text{1H}^+$.
Figure S23. Van 't Hoff plot for Cu$^{1+}$.