Supporting Information of

Interactions Between the Trianionic Ligand-centred Redox-active Metalloligand $[\text{Cr}^{III}(\text{perfluorocatecholato})_3]^{3-}$ and Guest Metal Ions

Masanori Wakizaka,‡, † Takeshi Matsumoto,† Atsushi Kobayashi,‡
Masako Kato,*, ‡ and Ho-Chol Chang*, †

‡ Division of Chemistry, Faculty of Science, Hokkaido University, North-10, West-8, Kita-ku, Sapporo 060-0810, Japan

† Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

* To whom correspondence should be addressed. E-mail: chang@kc.chuo-u.ac.jp

Phone: +81-3-3817-1897. Fax: +81-3-3817-1895.
Contents

1. Figure S1. ESI-MS spectra of 1.

2. **Figure S2.** CVs of the scan rate dependency of 1 in CH$_2$Cl$_2$ and MeCN.

3. **Figure S3.** Plots of ΔE as a function of $v^{1/2}$ for 1 in CH$_2$Cl$_2$ and MeCN.

4. **Figure S4.** Repeat scan CVs of 1 in CH$_2$Cl$_2$ and MeCN.

5. **Figure S5.** Spectroelectrochemistry of 1 in MeCN.

6. **Figure S6.** CV of CuII(ClO$_4$)$_2$·6H$_2$O in MeCN.

7. **Figure S7.** UV-vis-NIR spectra of (Bu$_4$N)[fac-MoV(Mp)$_3$], [Na(thf)$_3${fac-MoV(Mp)$_3$}], and [MnII(H$_2$O)(MeOH){fac-MoV(Mp)$_3$}]$_2$ in o-dichlorobenzene.

8. **Figure S8.** ESI-MS spectrum of 1 containing 1 eq. of LiClO$_4$ in MeCN.

9. **Figure S9.** ESI-MS spectrum of 1 containing 1 eq. of Mn(ClO$_4$)$_2$·6H$_2$O in MeCN.

10. **Figure S10.** ESI-MS spectrum of 1 containing 1 eq. of Fe(ClO$_4$)$_2$·6H$_2$O in MeCN.

11. **Figure S11.** ESI-MS spectrum of 1 containing 1 eq. of Co(ClO$_4$)$_2$·6H$_2$O in MeCN.

12. **Figure S12.** ESI-MS spectrum of 1 containing 1 eq. of Zn(ClO$_4$)$_2$·6H$_2$O in MeCN.

13. **Figure S13.** UV-vis-NIR spectra of electrochemically generated [CrIII(F$_4$Cat)$_2$(F$_4$SQ)$_2$]$^{2-}$ with 1 eq. of LiClO$_4$ or M(ClO$_4$)$_2$·6H$_2$O (M = Mn and Zn) in MeCN.

14. **Figure S14.** Spectroelectrochemistry of 1 with 1 eq. of LiClO$_4$ in MeCN.

15. **Scheme S1.** Plausible scheme for the ligand exchange reaction of [CrIII(F$_4$Cat)(F$_4$SQ)$_2$]$^{-}$ in MeCN.

16. **Figure S15.** Spectroelectrochemistry of 1 with 1 eq. of Co(ClO$_4$)$_2$·6H$_2$O in MeCN.

17. **Figure S16.** Spectroelectrochemistry of 1 with 1 eq. of Mn(ClO$_4$)$_2$·6H$_2$O in MeCN.

18. **Figure S17.** Spectroelectrochemistry of 1 with 1 eq. of Zn(ClO$_4$)$_2$·6H$_2$O in MeCN.

19. **Figure S18.** Spectroelectrochemistry of 1 with 1 eq. of Fe(ClO$_4$)$_3$·6H$_2$O in MeCN.

20. **Figure S19.** UV-vis-NIR spectrum of 1 with 1 eq. of Fe(ClO$_4$)$_3$·6H$_2$O in MeCN.
Figure S1. a) Positive- and b) negative-mode ESI-MS spectra of 1 in MeCN in the $m/z = 200$-1000 region.
Figure S2. CVs of 1 (1 mM) in a) CH₂Cl₂ and b) MeCN at 10 (black line), 20 (blue line), 50 (purple line), 100 (pink line), 200 (brown line), and 400 mV·s⁻¹ (green line) under an atmosphere of Ar using n-Bu₄NPF₆ (0.1 M).
Figure S3. Plots of ΔE as a function of $v^{1/2}$; a) ΔE^1, b) ΔE^2, c) and ΔE^3 values of 1 (1 mM) in CH$_2$Cl$_2$ (black circles) and MeCN (red circles) at 10, 20, 50, 100, 200, and 400 mV·s$^{-1}$ under an atmosphere of Ar using n-Bu$_4$NPF$_6$ (0.1 M).
Figure S4. Repeat scan (5 cycles) CVs of 1 (1 mM) in a) CH₂Cl₂ and b) MeCN at 20 mV·s⁻¹ under an atmosphere of Ar using n-Bu₄NPF₆ (0.1 M).
Figure S5. Changes of the UV-vis-NIR spectra of 1 (5 × 10⁻⁴ M) in MeCN at a) –0.10 V vs. Ag/Ag⁺ for 0 (black line), 6 (grey line), and 21 min (blue line); b) –0.4 V for 0 (blue line) and 6 min (black line) after electrolysis at –0.1 V for 21 min; c) 0.35 V for 0 (black line) and 21 min (green line); and d) 0.35 V for 21 (green line), 66 (grey line), and 141 min (red line). All spectra recorded under an atmosphere of N₂ using n-Bu₄NPF₆ (0.1 M).
Figure S6. CV of Cu(ClO$_4$)$_2$·6H$_2$O (1 mM) in MeCN at 20 mV·s$^{-1}$ under an atmosphere of Ar using n-Bu$_4$NPF$_6$ (0.1 M).
Figure S7. UV-vis-NIR spectra of \((n\text{-Bu}_4\text{N})[\text{fac-Mo}^\text{V} (\text{Mp})_3]\) \((3 \times 10^{-5} \text{ M, black line})\), \([\text{Na(thf)}_3\{\text{fac-Mo}^\text{V} (\text{Mp})_3\}]\) \((3 \times 10^{-5} \text{ M, red line})\), and \([\text{Mn}^\text{II} (\text{H}_2\text{O})(\text{MeOH})\{\text{fac-Mo}^\text{V} (\text{Mp})_3\}_2]\) \((1.5 \times 10^{-5} \text{ M, green line})\) in \(o\)-dichlorobenzene under an atmosphere of Ar. The inset shows a magnification of the UV region (285-330 nm).\(^{17}\)
Figure S8. Negative-mode ESI-MS spectrum of 1 and 1 eq. of LiClO$_4$ in MeCN in the $m/z =$ 200-1000 region.
Figure S9. Negative-mode ESI-MS spectrum of 1 and 1 eq. of Mn(ClO$_4$)$_2$·6H$_2$O in MeCN in the $m/z = 200$-1000 region.
Figure S10. Negative-mode ESI-MS spectrum of 1 and 1 eq. of Fe(ClO$_4$)$_2$·6H$_2$O in MeCN in the $m/z = 200$-1000 region.
Figure S11. Negative-mode ESI-MS spectrum of 1 and 1 eq. of Co(ClO₄)₂·6H₂O in MeCN in the $m/z = 200$-1000 region.
Figure S12. Negative-mode ESI-MS spectrum of 1 and 1 eq. of Zn(ClO$_4$)$_2$·6H$_2$O in MeCN in the $m/z = 200-1000$ region.
Figure S13. Changes of the UV-vis-NIR spectra of [Cr^{III}(F_4Cat)_2(F_4SQ)]^{2-} generated by the electrolysis of I (5 x 10^{-4} M) at -0.1 V vs. Ag/Ag^{+} in MeCN using n-Bu4NPF6 (0.1 M) upon addition of one equivalent of a) LiClO4 standing for 0 (black line) and 6 min (red line); b) Mn(ClO4)2·6H2O standing for 0 (black line), 6 (grey line), and 26 min (red line); and c) Zn(ClO4)2·6H2O standing for 0 (black line), 6 (grey line), and 26 min (red line). All spectra recorded under an atmosphere of N2.
Figure S14. Changes of the UV-vis-NIR spectra of 1 (5 × 10⁻⁴ M) with one equivalent of LiClO₄ in MeCN at a) –0.08 V vs. Ag/Ag⁺ for 0 (black line), 6 (grey line), and 36 min (blue line); b) –0.4 V for 0 (blue line) and 21 min (black line) after electrolysis at –0.08 V for 36 min; c) at 0.35 V for 0 (black line) and 6 min (green line); and d) 0.35 V for 6 (green line), 21 (grey line), 51 min (red line). All spectra recorded under an atmosphere of N₂ using n-Bu₄NPF₆ (0.1 M).
Scheme S1. Plausible scheme for the ligand exchange reaction of [Cr(F₄Cat)(F₄SQ)]⁻ in MeCN
Figure S15. Changes of the UV-vis-NIR spectra of 1 (5 × 10⁻⁴ M) with one equivalent of Co(ClO₄)₂·6H₂O in MeCN at a) 0.26 V vs. Ag/Ag⁺ for 0 (black line) and 26 min (green line) and b) 0.26 V for 26 (green line), 106 (grey line), and 246 min (red line). All spectra recorded under an atmosphere of N₂ using n-Bu₄NPF₆ (0.1 M).
Figure S16. Changes of the UV-vis-NIR spectra of 1 \((5 \times 10^{-4} \text{ M})\) with one equivalent of \(\text{Mn(ClO}_4\text{)}_2\cdot6\text{H}_2\text{O}\) in MeCN at a) 0.12 V vs. Ag/Ag\(^+\) for 0 (black line) and 6 min (blue line) and b) 0.12 V for 6 (blue line) and 21 min (red line). All spectra recorded under an atmosphere of \(\text{N}_2\) using \(n\)-Bu\(_4\)NPF\(_6\) (0.1 M).
Figure S17. Changes of the UV-vis-NIR spectra of 1 (5 \times 10^{-4} \text{ M}) in MeCN upon addition of one equivalent of Zn(ClO$_4$)$_2$·6H$_2$O at 0.20 V vs. Ag/Ag$^+$ for a) 0 (black line), 6 (grey line), and 21 min (blue line), and b) 21 (blue line), 81 (grey line), and 291 min (red line). All spectra recorded under an atmosphere of N$_2$ using n-Bu$_4$NPF$_6$ (0.1 M).
Figure S18. Changes of the UV-vis-NIR spectra of 1 (5 × 10^{-4} M) with one equivalent of Fe(ClO_4)_2·6H_2O in MeCN at a) 0.15 V vs. Ag/Ag^+ for 0 (black line) and 21 min (blue line); b) –0.4 V for 0 (blue line) and 21 min (black line) after electrolysis at 0.15 V for 21 min; c) 0.30 V for 6 (blue line), 66 (grey line), and 146 min (red line). All spectra recorded under an atmosphere of N_2 using n-Bu_4NPF_6 (0.1 M).
Figure S19. Changes of the UV-vis-NIR spectrum of 1 (5 × 10⁻⁴ M, black line) in MeCN upon addition of one equivalent of Fe(ClO₄)₃·6H₂O (red line) under an atmosphere of N₂.