Electronic Supporting Information

Pentanuclear lanthanide pyramids based on thiacalix[4]arene ligand exhibiting slow magnetic relaxation

Jing-Yuan Ge, a Jing Ru, a Feng Gao, a,b You Song, a Xin-Hui Zhou, c and Jing-Lin Zuo a *

a State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China

b School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China

c Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, P. R. China

* To whom correspondence should be addressed. Email: zuojl@nju.edu.cn; Fax: +86-25-83314502. Nanjing University.
Caption of Content

1. Table S1. Selected bond lengths (Å) and angles (°) for 1–3
2. Table S2. Selected bond lengths (Å) and angles (°) for 4–6
3. Table S3. Hydrogen-bond distances (Å) and angles (°) for 1 and 4
4. Table S4. Shape analysis for the metal centers of 1
5. Table S5. Shape analysis for the metal centers of 4
6. Fig. S1. The XRPD patterns (red lines) obtained from the as-synthesized solids of 1–6 and the simulated XRPD patterns (black lines) from single crystals of 1–6.
7. Fig. S2. The crystal structures of complexes 2 and 3.
8. Fig. S3. (a) The neighbouring {Dy₃} clusters are linked together through several sets of O–H···X and C–H···X (X = O and Cl) hydrogen bonds (blue dashed lines) between solvent and the framework in 1. (b) Each ⋯Dy₅⋯Dy₅⋯Dy₅⋯ chain stacks together via two sets of C–H···π interactions (orange dashed lines) in an ⋯ABAB⋯ fashion. (c) Top view of the layer.
9. Fig. S4. The crystal structures of complexes 5 and 6.
10. Fig. S5. In 4, two CH₃OH and three acetone molecules exist around the {Dy₅} cluster, and two CH₃OH molecules connect with the framework through several O–H···O hydrogen bonds (dashed lines).
11. Fig. S6. Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 1 at the frequency of 999 Hz under 1000 Oe dc field.
12. Fig. S7. Frequency-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 1 at the temperature of 1.9 K under zero and 1000 Oe dc field, respectively.
13. Fig. S8. Temperature-dependent in-phase χ' (right) and out-of-phase χ'' (left) ac susceptibility signals for 4 at the frequency of 999 Hz under 1000 Oe dc field.
14. Fig. S9. Frequency-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 4 at the temperature of 1.9 K under zero and 1000 Oe dc field, respectively.
15. **Fig. S10.** Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 2 at the frequency of 999 Hz under zero and 1000 Oe dc field, respectively.

16. **Fig. S11.** Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 3 at the frequency of 999 Hz under zero and 1000 Oe dc field, respectively.

17. **Fig. S12.** Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 5 at the frequency of 999 Hz under zero and 1000 Oe dc field, respectively.

18. **Fig. S13.** Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 6 at the frequency of 999 Hz under zero and 1000 Oe dc field, respectively.
Table S1. Selected bond lengths (Å) and angles (°) for 1–3

<table>
<thead>
<tr>
<th>Bond lengths (Å)</th>
<th>1 (Dy)</th>
<th>2 (Ho)</th>
<th>3 (Er)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(1)-O(10)</td>
<td>2.267(7)</td>
<td>2.263(6)</td>
<td>2.276(7)</td>
</tr>
<tr>
<td>Ln(1)-O(11)</td>
<td>2.296(6)</td>
<td>2.270(6)</td>
<td>2.239(7)</td>
</tr>
<tr>
<td>Ln(1)-O(7)</td>
<td>2.326(5)</td>
<td>2.320(4)</td>
<td>2.295(5)</td>
</tr>
<tr>
<td>Ln(1)-O(6)</td>
<td>2.324(5)</td>
<td>2.320(4)</td>
<td>2.290(5)</td>
</tr>
<tr>
<td>Ln(1)-O(1)</td>
<td>2.348(5)</td>
<td>2.344(5)</td>
<td>2.344(6)</td>
</tr>
<tr>
<td>Ln(1)-O(4)</td>
<td>2.360(5)</td>
<td>2.355(5)</td>
<td>2.331(6)</td>
</tr>
<tr>
<td>Ln(1)-O(5)</td>
<td>2.508(5)</td>
<td>2.485(4)</td>
<td>2.485(6)</td>
</tr>
<tr>
<td>Ln(1)-S(1)</td>
<td>2.926(2)</td>
<td>2.9310(19)</td>
<td>2.911(2)</td>
</tr>
<tr>
<td>Ln(1)-Ln(2)</td>
<td>3.5293(8)</td>
<td>3.5170(7)</td>
<td>3.4948(8)</td>
</tr>
<tr>
<td>Ln(1)-Ln(4)</td>
<td>3.5386(8)</td>
<td>3.5204(7)</td>
<td>3.5085(8)</td>
</tr>
<tr>
<td>Ln(1)-Ln(5)</td>
<td>3.7571(8)</td>
<td>3.7550(7)</td>
<td>3.7372(8)</td>
</tr>
<tr>
<td>Ln(2)-O(13)</td>
<td>2.262(6)</td>
<td>2.253(5)</td>
<td>2.230(7)</td>
</tr>
<tr>
<td>Ln(2)-O(12)</td>
<td>2.284(6)</td>
<td>2.262(6)</td>
<td>2.265(7)</td>
</tr>
<tr>
<td>Ln(2)-O(8)</td>
<td>2.315(5)</td>
<td>2.318(5)</td>
<td>2.324(5)</td>
</tr>
<tr>
<td>Ln(2)-O(7)</td>
<td>2.333(6)</td>
<td>2.314(5)</td>
<td>2.309(6)</td>
</tr>
<tr>
<td>Ln(2)-O(2)</td>
<td>2.347(6)</td>
<td>2.336(5)</td>
<td>2.355(6)</td>
</tr>
<tr>
<td>Ln(2)-O(1)</td>
<td>2.373(5)</td>
<td>2.356(4)</td>
<td>2.327(5)</td>
</tr>
<tr>
<td>Ln(2)-O(5)</td>
<td>2.505(5)</td>
<td>2.506(4)</td>
<td>2.476(5)</td>
</tr>
<tr>
<td>Ln(2)-S(2)</td>
<td>2.964(2)</td>
<td>2.963(2)</td>
<td>2.961(2)</td>
</tr>
<tr>
<td>Ln(2)-Ln(3)</td>
<td>3.5384(8)</td>
<td>3.5186(7)</td>
<td>3.5049(8)</td>
</tr>
<tr>
<td>Ln(2)-Ln(5)</td>
<td>3.7793(8)</td>
<td>3.7729(7)</td>
<td>3.7571(8)</td>
</tr>
<tr>
<td>Ln(3)-O(15)</td>
<td>2.249(7)</td>
<td>2.259(5)</td>
<td>2.262(7)</td>
</tr>
<tr>
<td>Ln(3)-O(14)</td>
<td>2.270(6)</td>
<td>2.263(5)</td>
<td>2.251(7)</td>
</tr>
<tr>
<td>Ln(3)-O(8)</td>
<td>2.322(6)</td>
<td>2.302(5)</td>
<td>2.263(6)</td>
</tr>
<tr>
<td>Ln(3)-O(9)</td>
<td>2.324(6)</td>
<td>2.318(5)</td>
<td>2.319(6)</td>
</tr>
<tr>
<td>Ln(3)-O(3)</td>
<td>2.352(5)</td>
<td>2.357(5)</td>
<td>2.343(5)</td>
</tr>
<tr>
<td>Ln(3)-O(2)</td>
<td>2.352(5)</td>
<td>2.369(5)</td>
<td>2.341(6)</td>
</tr>
<tr>
<td>Ln(3)-O(5)</td>
<td>2.496(5)</td>
<td>2.494(4)</td>
<td>2.482(5)</td>
</tr>
<tr>
<td>Ln(3)-S(3)</td>
<td>2.939(2)</td>
<td>2.932(2)</td>
<td>2.943(3)</td>
</tr>
<tr>
<td>Ln(3)-Ln(4)</td>
<td>3.5438(8)</td>
<td>3.5340(7)</td>
<td>3.5090(8)</td>
</tr>
<tr>
<td>Ln(3)-Ln(5)</td>
<td>3.7589(9)</td>
<td>3.7453(8)</td>
<td>3.7468(9)</td>
</tr>
<tr>
<td>Ln(4)-O(16)</td>
<td>2.249(6)</td>
<td>2.250(5)</td>
<td>2.242(7)</td>
</tr>
<tr>
<td>Ln(4)-O(17)</td>
<td>2.288(7)</td>
<td>2.256(6)</td>
<td>2.271(7)</td>
</tr>
<tr>
<td>Ln(4)-O(6)</td>
<td>2.311(6)</td>
<td>2.306(5)</td>
<td>2.308(6)</td>
</tr>
<tr>
<td>Ln(4)-O(4)</td>
<td>2.318(5)</td>
<td>2.332(4)</td>
<td>2.316(5)</td>
</tr>
<tr>
<td>Ln(4)-O(9)</td>
<td>2.330(5)</td>
<td>2.321(4)</td>
<td>2.285(5)</td>
</tr>
<tr>
<td>Ln(4)-O(3)</td>
<td>2.358(6)</td>
<td>2.336(5)</td>
<td>2.333(6)</td>
</tr>
<tr>
<td>Ln(4)-O(5)</td>
<td>2.539(5)</td>
<td>2.524(4)</td>
<td>2.516(5)</td>
</tr>
<tr>
<td>Ln(4)-S(4)</td>
<td>2.950(2)</td>
<td>2.944(2)</td>
<td>2.944(2)</td>
</tr>
<tr>
<td>Ln(4)-Ln(5)</td>
<td>3.7692(8)</td>
<td>3.7666(7)</td>
<td>3.7503(8)</td>
</tr>
</tbody>
</table>

Bond angles (°)

<p>| Ln(1)-O(1)-Ln(2) | 96.76(18) | 96.88(17) | 96.88(19) |
| Ln(2)-O(2)-Ln(3) | 97.02(2) | 96.83(19) | 96.5(2) |
| Ln(3)-O(3)-Ln(4) | 97.6(2) | 97.69(19) | 97.3(2) |
| Ln(4)-O(4)-Ln(1) | 98.30(18) | 97.36(17) | 98.04(18) |
| Ln(1)-O(5)-Ln(3) | 169.4(2) | 168.9(2) | 168.6(2) |
| Ln(1)-O(5)-Ln(2) | 89.51(15) | 89.61(14) | 89.57(18) |
| Ln(3)-O(5)-Ln(2) | 90.07(15) | 89.46(14) | 89.97(17) |
| Ln(1)-O(5)-Ln(4) | 89.03(15) | 89.30(14) | 89.10(18) |
| Ln(3)-O(5)-Ln(4) | 89.47(14) | 89.54(13) | 89.18(17) |
| Ln(2)-O(5)-Ln(4) | 169.6(2) | 169.2(2) | 168.9(2) |
| Ln(4)-O(6)-Ln(1) | 99.6(2) | 99.09(18) | 99.5(2) |
| Ln(4)-O(6)-Ln(5) | 105.3(2) | 105.54(18) | 104.7(2) |
| Ln(1)-O(6)-Ln(5) | 104.4(2) | 104.66(19) | 104.7(2) |
| Ln(1)-O(7)-Ln(2) | 98.50(19) | 98.76(18) | 98.77(19) |
| Ln(1)-O(7)-Ln(5) | 103.9(2) | 104.51(18) | 105.3(2) |
| Ln(2)-O(7)-Ln(5) | 104.5(2) | 105.41(18) | 105.6(2) |
| Ln(2)-O(8)-Ln(3) | 99.5(2) | 99.20(18) | 99.62(19) |</p>
<table>
<thead>
<tr>
<th>Bond</th>
<th>4 (Dy)</th>
<th>5 (Ho)</th>
<th>6 (Er)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(1)-O(9)</td>
<td>2.184(4)</td>
<td>2.188(4)</td>
<td>2.182(4)</td>
</tr>
<tr>
<td>Ln(1)-O(6)</td>
<td>2.301(4)</td>
<td>2.289(4)</td>
<td>2.283(4)</td>
</tr>
<tr>
<td>Ln(1)-O(14)</td>
<td>2.342(4)</td>
<td>2.327(4)</td>
<td>2.314(4)</td>
</tr>
<tr>
<td>Ln(1)-O(10)</td>
<td>2.351(4)</td>
<td>2.337(4)</td>
<td>2.326(4)</td>
</tr>
<tr>
<td>Ln(1)-O(7)</td>
<td>2.359(4)</td>
<td>2.351(4)</td>
<td>2.341(4)</td>
</tr>
<tr>
<td>Ln(1)-O(13)</td>
<td>2.432(3)</td>
<td>2.406(4)</td>
<td>2.396(4)</td>
</tr>
<tr>
<td>Ln(1)-S(7)</td>
<td>2.8791(16)</td>
<td>2.8669(16)</td>
<td>2.8607(16)</td>
</tr>
</tbody>
</table>

Table S2. Selected bond lengths (Å) and angles (°) for 4–6
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(1)-S(10)</td>
<td>2.8993(16) 3.8928(17) 3.8847(16)</td>
</tr>
<tr>
<td>Ln(1)-Ln(5)</td>
<td>3.5708(4) 3.5512(5) 3.5383(4)</td>
</tr>
<tr>
<td>Ln(1)-Ln(4)</td>
<td>3.6285(4) 3.6062(5) 3.5900(4)</td>
</tr>
<tr>
<td>Ln(1)-Ln(2)</td>
<td>3.6943(4) 3.6766(5) 3.6608(4)</td>
</tr>
<tr>
<td>Ln(2)-O(20)</td>
<td>2.289(4) 2.279(4) 2.276(4)</td>
</tr>
<tr>
<td>Ln(2)-O(19)</td>
<td>2.2984(4) 2.293(4) 2.288(4)</td>
</tr>
<tr>
<td>Ln(2)-O(15)</td>
<td>2.370(4) 2.365(4) 2.351(4)</td>
</tr>
<tr>
<td>Ln(2)-O(8)</td>
<td>2.417(4) 2.402(4) 2.390(4)</td>
</tr>
<tr>
<td>Ln(2)-O(7)</td>
<td>2.421(4) 2.406(4) 2.395(4)</td>
</tr>
<tr>
<td>Ln(2)-O(21)</td>
<td>2.442(4) 2.427(5) 2.416(4)</td>
</tr>
<tr>
<td>Ln(2)-O(10)</td>
<td>2.465(4) 2.456(4) 2.448(4)</td>
</tr>
<tr>
<td>Ln(2)-O(13)</td>
<td>2.761(4) 2.749(4) 2.745(4)</td>
</tr>
<tr>
<td>Ln(2)-S(8)</td>
<td>2.9023(16) 2.8919(16) 2.8863(16)</td>
</tr>
<tr>
<td>Ln(2)-Ln(3)</td>
<td>3.6411(4) 3.6199(5) 3.6049(4)</td>
</tr>
<tr>
<td>Ln(2)-Ln(5)</td>
<td>3.7637(4) 3.7496(5) 3.7364(4)</td>
</tr>
<tr>
<td>Ln(3)-O(2)</td>
<td>2.190(4) 2.187(4) 2.186(4)</td>
</tr>
<tr>
<td>Ln(3)-O(8)</td>
<td>2.326(4) 2.309(4) 2.298(4)</td>
</tr>
<tr>
<td>Ln(3)-O(15)</td>
<td>2.339(4) 2.322(4) 2.322(4)</td>
</tr>
<tr>
<td>Ln(3)-O(5)</td>
<td>2.349(4) 2.336(4) 2.322(4)</td>
</tr>
<tr>
<td>Ln(3)-O(3)</td>
<td>2.362(4) 2.348(4) 2.335(4)</td>
</tr>
<tr>
<td>Ln(3)-O(13)</td>
<td>2.419(4) 2.413(4) 2.397(4)</td>
</tr>
<tr>
<td>Ln(3)-S(5)</td>
<td>2.8807(15) 2.8692(16) 2.8629(16)</td>
</tr>
<tr>
<td>Ln(3)-S(2)</td>
<td>2.9242(16) 2.9109(17) 2.9036(16)</td>
</tr>
<tr>
<td>Ln(3)-Ln(5)</td>
<td>3.5713(4) 3.5546(5) 3.5404(4)</td>
</tr>
<tr>
<td>Ln(3)-Ln(4)</td>
<td>3.6725(4) 3.6542(5) 3.6380(4)</td>
</tr>
<tr>
<td>Ln(4)-O(17)</td>
<td>2.289(4) 2.285(5) 2.279(4)</td>
</tr>
<tr>
<td>Ln(4)-O(16)</td>
<td>2.304(4) 2.292(5) 2.287(5)</td>
</tr>
<tr>
<td>Ln(4)-O(14)</td>
<td>2.383(4) 2.374(4) 2.365(4)</td>
</tr>
<tr>
<td>Ln(4)-O(6)</td>
<td>2.414(4) 2.403(4) 2.391(4)</td>
</tr>
<tr>
<td>Ln(4)-O(5)</td>
<td>2.417(4) 2.407(4) 2.397(4)</td>
</tr>
<tr>
<td>Ln(4)-O(18)</td>
<td>2.420(4) 2.402(5) 2.395(4)</td>
</tr>
<tr>
<td>Ln(4)-O(3)</td>
<td>2.477(4) 2.467(4) 2.456(4)</td>
</tr>
<tr>
<td>Ln(4)-O(13)</td>
<td>2.719(4) 2.706(4) 2.691(4)</td>
</tr>
<tr>
<td>Ln(4)-S(6)</td>
<td>2.9347(16) 2.9226(17) 2.9191(16)</td>
</tr>
<tr>
<td>Ln(4)-Ln(5)</td>
<td>3.7776(5) 3.7612(6) 3.7480(4)</td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>Ln(5)-O(11)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ln(5)-O(4)</td>
<td>2.199(4)</td>
</tr>
<tr>
<td>Ln(5)-O(14)</td>
<td>2.400(4)</td>
</tr>
<tr>
<td>Ln(5)-O(15)</td>
<td>2.405(4)</td>
</tr>
<tr>
<td>Ln(5)-O(10)</td>
<td>2.567(4)</td>
</tr>
<tr>
<td>Ln(5)-O(3)</td>
<td>2.569(4)</td>
</tr>
<tr>
<td>Ln(5)-O(13)</td>
<td>2.577(4)</td>
</tr>
<tr>
<td>Ln(5)-S(3)</td>
<td>3.0129(17)</td>
</tr>
<tr>
<td>Ln(5)-S(11)</td>
<td>3.0446(16)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond angles (°)</th>
<th>Ln(3)-O(3)-Ln(4)</th>
<th>98.70(14)</th>
<th>98.71(14)</th>
<th>98.79(14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(3)-O(3)-Ln(5)</td>
<td>92.70(13)</td>
<td>93.08(14)</td>
<td>93.26(14)</td>
<td></td>
</tr>
<tr>
<td>Ln(4)-O(3)-Ln(5)</td>
<td>96.92(13)</td>
<td>97.24(14)</td>
<td>97.44(13)</td>
<td></td>
</tr>
<tr>
<td>Ln(3)-O(5)-Ln(4)</td>
<td>100.80(14)</td>
<td>100.78(15)</td>
<td>100.85(15)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-O(6)-Ln(4)</td>
<td>100.58(15)</td>
<td>100.42(15)</td>
<td>100.34(15)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-O(7)-Ln(2)</td>
<td>101.22(14)</td>
<td>101.22(15)</td>
<td>101.24(15)</td>
<td></td>
</tr>
<tr>
<td>Ln(3)-O(8)-Ln(2)</td>
<td>100.27(14)</td>
<td>100.39(15)</td>
<td>100.49(15)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-O(10)-Ln(2)</td>
<td>100.15(13)</td>
<td>100.16(14)</td>
<td>100.11(14)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-O(10)-Ln(5)</td>
<td>93.00(13)</td>
<td>93.10(14)</td>
<td>93.30(13)</td>
<td></td>
</tr>
<tr>
<td>Ln(2)-O(10)-Ln(5)</td>
<td>96.79(13)</td>
<td>97.00(14)</td>
<td>97.10(13)</td>
<td></td>
</tr>
<tr>
<td>Ln(3)-O(13)-Ln(1)</td>
<td>177.87(18)</td>
<td>178.09(19)</td>
<td>177.87(18)</td>
<td></td>
</tr>
<tr>
<td>Ln(3)-O(13)-Ln(5)</td>
<td>91.19(12)</td>
<td>90.91(13)</td>
<td>91.03(12)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-O(13)-Ln(5)</td>
<td>90.88(12)</td>
<td>90.95(12)</td>
<td>90.98(12)</td>
<td></td>
</tr>
<tr>
<td>Ln(3)-O(13)-Ln(4)</td>
<td>91.05(12)</td>
<td>90.91(13)</td>
<td>91.10(12)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-O(13)-Ln(4)</td>
<td>89.38(11)</td>
<td>89.53(12)</td>
<td>89.57(12)</td>
<td></td>
</tr>
<tr>
<td>Ln(5)-O(13)-Ln(4)</td>
<td>90.95(12)</td>
<td>90.85(12)</td>
<td>90.98(12)</td>
<td></td>
</tr>
<tr>
<td>Ln(3)-O(13)-Ln(2)</td>
<td>89.07(11)</td>
<td>88.81(12)</td>
<td>88.77(12)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-O(13)-Ln(2)</td>
<td>90.47(12)</td>
<td>90.74(13)</td>
<td>90.55(12)</td>
<td></td>
</tr>
<tr>
<td>Ln(5)-O(13)-Ln(2)</td>
<td>89.60(11)</td>
<td>89.54(12)</td>
<td>89.43(11)</td>
<td></td>
</tr>
<tr>
<td>Ln(4)-O(13)-Ln(2)</td>
<td>179.43(18)</td>
<td>179.52(17)</td>
<td>179.57(18)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-O(14)-Ln(4)</td>
<td>100.32(14)</td>
<td>100.18(15)</td>
<td>100.23(14)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-O(14)-Ln(5)</td>
<td>97.70(14)</td>
<td>97.91(15)</td>
<td>97.99(14)</td>
<td></td>
</tr>
<tr>
<td>Ln(4)-O(14)-Ln(5)</td>
<td>104.33(14)</td>
<td>104.55(16)</td>
<td>104.53(15)</td>
<td></td>
</tr>
<tr>
<td>Ln(3)-O(15)-Ln(2)</td>
<td>101.30(14)</td>
<td>101.12(15)</td>
<td>100.99(15)</td>
<td></td>
</tr>
<tr>
<td>Ln(3)-O(15)-Ln(5)</td>
<td>97.68(14)</td>
<td>97.98(15)</td>
<td>97.83(14)</td>
<td></td>
</tr>
<tr>
<td>Complexes</td>
<td>D−H···A</td>
<td>D−H</td>
<td>H···A</td>
<td>D···A</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Ln(2)-O(15)-Ln(5)</td>
<td>104.04(14)</td>
<td>104.17(15)</td>
<td>104.49(15)</td>
<td></td>
</tr>
<tr>
<td>Ln(5)-Ln(1)-Ln(4)</td>
<td>63.293(9)</td>
<td>63.400(10)</td>
<td>63.437(8)</td>
<td></td>
</tr>
<tr>
<td>Ln(5)-Ln(1)-Ln(2)</td>
<td>62.376(8)</td>
<td>62.472(8)</td>
<td>62.504(8)</td>
<td></td>
</tr>
<tr>
<td>Ln(4)-Ln(1)-Ln(2)</td>
<td>96.891(9)</td>
<td>97.009(10)</td>
<td>97.126(9)</td>
<td></td>
</tr>
<tr>
<td>Ln(3)-Ln(2)-Ln(1)</td>
<td>82.780(9)</td>
<td>82.654(10)</td>
<td>82.530(8)</td>
<td></td>
</tr>
<tr>
<td>Ln(3)-Ln(2)-Ln(5)</td>
<td>57.642(8)</td>
<td>57.645(9)</td>
<td>57.632(7)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-Ln(2)-Ln(5)</td>
<td>57.203(8)</td>
<td>57.125(9)</td>
<td>57.143(8)</td>
<td></td>
</tr>
<tr>
<td>Ln(5)-Ln(3)-Ln(2)</td>
<td>62.902(8)</td>
<td>63.008(8)</td>
<td>63.049(8)</td>
<td></td>
</tr>
<tr>
<td>Ln(5)-Ln(3)-Ln(4)</td>
<td>62.847(9)</td>
<td>62.882(11)</td>
<td>62.931(8)</td>
<td></td>
</tr>
<tr>
<td>Ln(2)-Ln(3)-Ln(4)</td>
<td>97.056(9)</td>
<td>97.165(10)</td>
<td>97.270(9)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-Ln(4)-Ln(3)</td>
<td>83.257(9)</td>
<td>83.157(10)</td>
<td>83.056(9)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-Ln(5)-Ln(3)</td>
<td>85.547(8)</td>
<td>85.392(9)</td>
<td>85.218(8)</td>
<td></td>
</tr>
<tr>
<td>Ln(1)-Ln(5)-Ln(2)</td>
<td>60.420(8)</td>
<td>60.403(9)</td>
<td>60.353(8)</td>
<td></td>
</tr>
<tr>
<td>Ln(3)-Ln(5)-Ln(2)</td>
<td>59.456(8)</td>
<td>59.347(9)</td>
<td>59.320(8)</td>
<td></td>
</tr>
</tbody>
</table>

Table S3. Hydrogen-bond distances (Å) and angles (°) for 1 and 4.
Table S4. Shape analysis for the metal centers of 1

<table>
<thead>
<tr>
<th>ML8</th>
<th>SAPR-8</th>
<th>TDD-8</th>
<th>JSD-8</th>
<th>JBTPR-8</th>
<th>BTPR-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy1</td>
<td>1.759</td>
<td>2.335</td>
<td>3.638</td>
<td>1.422</td>
<td>1.857</td>
</tr>
<tr>
<td>Dy2</td>
<td>1.875</td>
<td>3.051</td>
<td>4.234</td>
<td>1.685</td>
<td>2.195</td>
</tr>
<tr>
<td>Dy3</td>
<td>1.839</td>
<td>2.646</td>
<td>3.836</td>
<td>1.551</td>
<td>2.027</td>
</tr>
<tr>
<td>Dy4</td>
<td>1.918</td>
<td>2.767</td>
<td>4.070</td>
<td>1.380</td>
<td>1.944</td>
</tr>
<tr>
<td>Dy5</td>
<td>0.134</td>
<td>2.457</td>
<td>5.175</td>
<td>2.782</td>
<td>2.162</td>
</tr>
</tbody>
</table>

SAPR-8 (D4d): Square antiprism
TDD-8 (D2d): Triangular dodecahedron
JSD-8 (D2d): Snub diphenoid J84
JBTPR-8 (C2v): Biaugmented trigonal prism J50
BTPR-8 (C2v): Biaugmented trigonal prism

Table S5. Shape analysis for the metal centers of 4

<table>
<thead>
<tr>
<th>ML9</th>
<th>JCSAPR-9</th>
<th>CSAPR-9</th>
<th>JTCTPR-9</th>
<th>TCTPR-9</th>
<th>MFF-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy2</td>
<td>1.042</td>
<td>1.088</td>
<td>1.825</td>
<td>1.690</td>
<td>1.649</td>
</tr>
<tr>
<td>Dy4</td>
<td>1.260</td>
<td>1.201</td>
<td>1.696</td>
<td>1.623</td>
<td>1.719</td>
</tr>
<tr>
<td>Dy5</td>
<td>3.070</td>
<td>2.665</td>
<td>1.446</td>
<td>3.151</td>
<td>3.208</td>
</tr>
</tbody>
</table>

JCSAPR-9 (C4v): Capped square antiprism J10
CSAPR-9 (C4v): Spherical capped square antiprism
JTCTPR-9 (D3h): Tricapped trigonal prism J51
TCTPR-9 (D3h): Spherical tricapped trigonal prism
MFF-9 (Cs): Muffin
Fig. S1. The XRPD patterns (red lines) obtained from the as-synthesized solids of 1–6 and the simulated XRPD patterns (black lines) from single crystals of 1–6.

Fig. S2. The crystal structures of complexes 2 and 3.
Fig. S3. (a) The neighbouring \{Dy\}_5 clusters are linked together through several sets of O–H⋯X and C–H⋯X (X = O and Cl) hydrogen bonds (blue dashed lines) between solvent and the framework in 1. (b) Each ⋯Dy\(_5\)⋯Dy\(_5\)⋯Dy\(_5\)⋯ chain stacks together via two sets of C–H⋯π interactions (orange dashed lines) in an ⋯ABAB⋯ fashion. (c) Top view of the layer.

Fig. S4. The crystal structures of complexes 5 and 6.
Fig. S5. In 4, two CH₃OH and three acetone molecules exist around the {Dy₃} cluster, and two CH₃OH molecules connect with the framework through several O−H···O hydrogen bonds (dashed lines).

Fig. S6. Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 1 at the frequency of 999 Hz under 1000 Oe dc field.

Fig. S7. Frequency-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 1 at the temperature of 1.9 K under zero and 1000 Oe dc field, respectively.
Fig. S8. Temperature-dependent in-phase χ' (right) and out-of-phase χ'' (left) ac susceptibility signals for 4 at the frequency of 999 Hz under 1000 Oe dc field.

Fig. S9. Frequency-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 4 at the temperature of 1.9 K under zero and 1000 Oe dc field, respectively.

Fig. S10. Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 2 at the frequency of 999 Hz under zero and 1000 Oe dc field, respectively.
Fig. S11. Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 3 at the frequency of 999 Hz under zero and 1000 Oe dc field, respectively.

Fig. S12. Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 5 at the frequency of 999 Hz under zero and 1000 Oe dc field, respectively.

Fig. S13. Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 6 at the frequency of 999 Hz under zero and 1000 Oe dc field, respectively.