Tuning of excitation wavelength in Eu\(^{3+}\)-aminophenyl based polyfluorinated \(\beta\)-diketonate complexes: Red-emitting Eu\(^{3+}\)-complex encapsulated in silica/polymer hybrid material excited by blue light

T. V. Usha Gangan\(^{a,b}\) and M. L. P. Reddy\(^{a,b,*}\)

\(^{a}\)AcSIR – Academy of Scientific & Innovative Research, CSIR-NIIST Campus, Thiruvananthapuram, India

\(^{b}\)Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), CSIR, Thiruvananthapuram-695 019, Kerala, India

E-mail: mlpreddy55@gmail.com

Contents

Fig. S1 \(^1\)H NMR spectrum of the ligand HAPFP.
Fig. S2 \(^{13}\)C NMR spectrum of the ligand HAPFP.
Fig. S3 \(^1\)H NMR spectrum of the ligand HDMAPFP.
Fig. S4 \(^{13}\)C NMR spectrum of the ligand HDMAPFP.
Fig. S5 \(^1\)H NMR spectrum of the ligand HDPAPFP.
Fig. S6 \(^{13}\)C NMR spectrum of the ligand HDPAPFP.
Fig. S7 Thermogravimetric curves for Ln\(^{3+}\) complexes 1 – 9.
Fig. S8 \(^5\)D\(_0\) decay profiles for complexes 1 and 4 (solid-state) where emission monitored around 612 nm. The straight lines are the best fits \((r^2 = 0.999)\) considering single-exponential behavior.
Fig. S9 \(^5\)D\(_0\) decay profiles for complexes 2 and 5 (solid-state) where emission monitored around 612 nm. The straight lines are the best fits \((r^2 = 0.999)\) considering single-exponential behavior.
Fig. S10 Photoluminescence intensity of the complex Eu(DPAPFP)\(_3\)DDXPO in solid state as a function of irradiation time.
Fig. S11 FT-IR spectra of the EuC-Gel and EuC-PMMA-Gel.
Fig. S12 XRD patterns of the EuC-Gel and EuC-PMMA-Gel.
Fig. S13 TG/DTA curves for (a) Eu(DPAPFP)\(_3\)DDXPO, (b) EuC-Gel and (c) EuC-PMMA-Gel.
Fig. S14 UV-visible absorption spectra of the gels (solid).
Fig. S1 1H NMR spectrum of the ligand HAPFP.
Fig. S2 13C NMR spectrum of the ligand HAPFP.

![13C NMR spectrum of the ligand HAPFP](image)

Fig. S3 1H NMR spectrum of the ligand HDMAPFP.

![1H NMR spectrum of the ligand HDMAPFP](image)

Fig. S4 13C NMR spectrum of the ligand HDMAPFP.

![13C NMR spectrum of the ligand HDMAPFP](image)
Fig. S5 1H NMR spectrum of the ligand HDPAPFP.

Fig. S6 13C NMR spectrum of the ligand HDPAPFP.
Fig. S7 Thermogravimetric curves for Ln$^{3+}$ complexes 1 – 9.
Fig. S8 5D_0 decay profiles for complexes 1 and 4 (solid-state) where emission monitored around 612 nm. The straight lines are the best fits ($r^2 = 0.999$) considering single-exponential behavior.

Fig. S9 5D_0 decay profiles for complexes 2 and 5 (solid-state) where emission monitored around 612 nm. The straight lines are the best fits ($r^2 = 0.999$) considering single-exponential behavior.
Fig. S10 Photoluminescence intensity of the complex Eu(DPAPFP)$_3$DDXPO in solid state as a function of irradiation time.

Fig. S11 FT-IR spectra of the EuC-Gel and EuC-PMMA-Gel.
Fig. S12 XRD patterns of the EuC-Gel and EuC-PMMA-Gel.
Fig. S13 TG/DTA curves for (a) Eu(DPAPFP)$_3$DDXPO, (b) EuC-Gel and (c) EuC-PMMA-Gel.
Fig. S14 UV-visible absorption spectra of the gels (solid).