Supporting Information

Labile ruthenium(II) complexes with extended phenyl-substituted terpyridyl ligands: synthesis, aquation and anticancer evaluation

Huaiyi Huang, Pingyu Zhang, Yu Chen, Liangnian Ji* and Hui Chao*

MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
Email: cesjln@mail.sysu.edu.cn; ceschh@mail.sysu.edu.cn

Content

Figure S1 ES-MS spectrum of Ru1 ...2
Figure S2 1H NMR spectrum of Ru1 ..2
Figure S3 ES-MS spectrum of Ru2 ...3
Figure S4 1H NMR spectrum of Ru2 ..3
Figure S5 ES-MS spectrum of Ru3 ...4
Figure S6 1H NMR spectrum of Ru3 ..4
Figure S7 Aquation of Ru1 tracking by UV-vis spectra and LC-MS spectra5
Figure S8 Aquation of Ru1 tracking by UV-vis spectra and LC-MS spectra6
Figure S9 Aquation of Ru1-Ru3 in present of 100 mM NaCl7
Figure S10 Aquation of Ru1-Ru3 in present of 23 mM NaCl8
Figure S11 Aquation of Ru1-Ru3 in present of 4 mM NaCl9
Figure S12 Ru1 with increasing concentration in PBS buffer10
Figure S13 Ru2 with increasing concentration in PBS buffer11
Figure S14 Ru3 with increasing concentration in PBS buffer12
Figure S15 Ethidium bromide stained agarose gels of pUC19 plasmid DNA13
Figure S16 MALDI-TOF mass spectra ...13
Fig. S1 ES-MS (CH$_3$OH) spectrum of Ru1.

Fig. S2 1H NMR spectrum (300 MHz, DMSO-d_6) of Ru1.
Fig. S3 ES-MS (CH$_3$OH) spectrum of Ru2.

Fig. S4 1H NMR spectrum (300 MHz, DMSO-d_6) of Ru2.
Fig. S5 ES-MS (CH$_3$OH) spectrum of Ru3.

Fig. S6 1H NMR spectrum (300 MHz, DMSO-d_6) of Ru3.
Fig. S7 (A) Aquation of Ru1 in PBS buffer solution (pH = 7.4) tracking by UV-vis spectra. (B) LC-MS spectra of the aquated Ru1.
Fig. S8 (A) Aquation of Ru2 in PBS buffer solution (pH = 7.4) tracking by UV-vis spectra. (B) LC-MS spectra of the aquated Ru2.
Fig. S9 Aquation of **Ru1-Ru3** in present of 100 mM NaCl concentration by UV-vis spectra.
Fig. S10 Aquation of Ru1-Ru3 in present of 23 mM NaCl concentration by UV-vis spectra.
Fig. S11 Aquation of Ru1-Ru3 in present of 4 mM NaCl concentration by UV-vis spectra.
Fig. S12 UV-vis spectrum of Ru1 with increasing concentration in PBS buffer solution in present of 100 mM NaCl.
Fig. S13 UV-vis spectrum of **Ru2** with increasing concentration in PBS buffer solution in present of 100 mM NaCl.
Fig. S14 UV-vis spectrum of **Ru3** with increasing concentration in PBS buffer solution in present of 100 mM NaCl.
Fig. S15 Ethidium bromide stained agarose gels of pUC19 plasmid DNA (10 mM phosphate, pH = 7.5) in the presence of Ru1-Ru3.

Fig. S16 (A) MALDI-TOF mass spectra of free oligonucleotides OD1 and OD2. (B) Spectra of adducts of Ru1-Ru3 with oligonucleotide after reaction for 12 h. (C) Spectra of adducts of adduct of Ru3 with oligonucleotide with extending incubation time.