Supporting Information

Synthesis, Structure, Spectral, Electrochemical and Fluoride Sensing Properties of *meso*-Pyrrolyl Boron Dipyrrromethene
Booruga Umasekhar, Emandi Ganapathi, Tamal Chatterjee and Mangalampalli Ravikanth*
Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
E-mail: ravikanth@chem.iitb.ac.in

<table>
<thead>
<tr>
<th>Entry</th>
<th>Contents</th>
<th>Page no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Figure S1. HRMS spectrum of compound 5</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Figure S2. 1H NMR spectrum of compound 5 recorded in CDCl$_3$</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Figure S3. 1H NMR spectrum of compound 5 recorded in DMSO-d$_6$</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Figure S4. 1H-1HCOSY spectrum of compound 5</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Figure S5. 13C NMR spectrum of compound 5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Figure S6. 19F NMR spectrum of compound 5</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Figure S7. 11B NMR spectrum of compound 5</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>Figure S8. HRMS spectrum of compound 6</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Figure S9. 1H NMR spectrum of compound 6</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>Figure S10. 13C NMR spectrum of compound 6</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>Figure S11. 19F NMR spectrum of compound 6 recorded in CDCl$_3$</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>Figure S12. 19F NMR spectrum of compound 6 recorded in DMSO-d$_6$</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>Figure S13. 11B NMR spectrum of compound 6</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>Figure S14. Comparison of 1H-NMR spectra of compound 5 and 6</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>Figure S15. HRMS spectrum of compound 7</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>Figure S16. 1H NMR spectrum of compound 7</td>
<td>18</td>
</tr>
<tr>
<td>17</td>
<td>Figure S17. 19F NMR spectrum of compound 7</td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>Figure S18. 11B NMR spectrum of compound 7</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>Figure S19. HRMS spectrum of compound 8</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>Figure S20. 1H NMR spectrum of compound 8</td>
<td>22</td>
</tr>
<tr>
<td>21</td>
<td>Figure S21. 19F NMR spectrum of compound 8</td>
<td>23</td>
</tr>
<tr>
<td>22</td>
<td>Figure S22. 11B NMR spectrum of compound 8</td>
<td>24</td>
</tr>
<tr>
<td>23</td>
<td>Figure S23. 1H NMR spectrum of compound 9</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>Figure S24. 1H-1H COSY spectrum of compound 9</td>
<td>26</td>
</tr>
</tbody>
</table>
Figure S25. 13C NMR spectrum of compound 9
Figure S26. 19F NMR spectrum of compound 9
Figure S27. 11B NMR spectrum of compound 9
Figure S28. 1H NMR spectrum of compound 11
Figure S29. Comparison of absorption spectrum of compound 5
Figure S30. Comparison of absorption spectrum of compound 6
Figure S31. Comparison of absorption spectrum of compound 7
Figure S32. Comparison of absorption spectrum of compound 8
Figure S33. Comparison of absorption spectrum of compound 9
Figure S34. Comparison of emission spectrum of compound 5
Figure S35. Comparison of emission spectrum of compound 6
Figure S36. Comparison of emission spectrum of compound 8
Figure S37. Comparison of emission spectrum of compound 9
Figure S38. Job’s plot of compound 5
Figure S39. Supramolecular assembly through a weak intermolecular hydrogen bonding network in BODIPY 5.
Figure S40. Supramolecular assembly through a weak intermolecular hydrogen bonding network in BODIPY 6.
Figure S41. Optical response of BODIPY 5 after addition of different anions
Experimental details
Figure S42. Absorption spectrum of compound 5 with HPO$_4^{2-}$ and H$_2$PO$_4$
Figure S43. Absorption spectrum of compound 5 with F$^-$ in CH$_3$OH
Figure S44. Absorption spectrum titration of compound 5 with F$^-$ in CH$_3$CN
Figure S45. Absorption spectrum titration of compound 5 with F$^-$ in CH$_3$CN:H$_2$O
Figure S1: HRMS spectrum of compound 5

Calcd mol. wt. = 280.0830
Observed mol. Wt. = 280.0826
Figure S2: 1H NMR spectrum of compound 5 recorded in CDCl$_3$.
Figure S3: 1H NMR spectrum of compound 5 recorded in DMSO-d_6. Inset shows the expansion.
Figure S4: 1H-1HCOSY NMR spectrum of compound 5 recorded in CDCl$_3$.
Figure S5: 13C NMR spectrum of compound 5 recorded in CDCl$_3$.
Figure S6: 19F NMR spectrum of compound 5 recorded in CDCl$_3$. Inset shows the expansion.
Figure S7: 1H NMR spectrum of compound 5 recorded in CDCl$_3$. Inset shows the expansion.
Figure S8: HRMS spectrum of compound 6
Figure S9: 1H NMR spectrum of compound 6 recorded in CDCl$_3$. Inset shows the expansion.
Figure S10: 13C NMR spectrum of compound 6 recorded in CDCl$_3$.
Figure S11: 19F NMR spectrum of compound 6 recorded in CDCl$_3$. Inset shows the expansion.
Figure S12: 19F NMR spectrum of compound 6 recorded in DMSO-d6. Inset shows the expansion.
Figure S13: 19B NMR spectrum of compound 6 recorded in CDCl$_3$. Inset shows the expansion.
Figure S14: Comparison of 1H NMR spectrum of compound 5 and 6 recorded in CDCl$_3$.
Figure S15: HRMS spectrum of compound 7.

Calcd mol. wt. = 357.9936
Observd mol. Wt. = 357.9920
Figure S16: 1H NMR spectrum of compound 7 recorded in CDCl$_3$. Inset shows the expansion.
Figure S17: 19F NMR spectrum of compound 7 recorded in CDCl$_3$. Inset shows the expansion
Figure S18: 11B NMR spectrum of compound 7 recorded in CDCl$_3$.
Figure S19: HRMS spectrum of compound 8
Figure S20: 1H NMR spectrum of compound 8 recorded in CDCl$_3$. Inset shows the Expansion.
Figure S21: 1H NMR spectrum of compound 8 recorded in CDCl$_3$. Inset shows the Expansion.
Figure S22: 11B NMR spectrum of compound 8 recorded in CDCl$_3$. Inset shows the Expansion.
Figure S23: 1H NMR spectrum of compound 9 recorded in CDCl$_3$. Inset shows the Expansion.
Figure S24: 1H-1H COSY spectrum of compound 9 recorded in CDCl$_3$
Figure S25: 13C NMR spectrum of compound 9 recorded in CDCl$_3$.
Figure S26: 19F NMR spectrum of compound 9 recorded in CDCl$_3$. Inset shows the Expansion.
Figure S27: 11B NMR spectrum of compound 9 recorded in CDCl$_3$. Inset shows the expansion.
Figure S28: 1H NMR spectrum of compound 11 recorded in CDCl$_3$.
Figure S29: Comparison of absorption spectra of compound 5 \((2\times10^{-5}\text{M})\) recorded in different solvents.
Figure S30: Comparison of absorption spectra of compound 6 (2×10^{-5}M) recorded in different solvents.
Figure S31: Comparison of absorption spectra of compound 7 (2×10^{-5}M) recorded in different solvents.
Figure S32: Comparison of absorption spectra of compound 8 (2×10⁻⁵M) recorded in different solvents.
Figure S33: Comparison of absorption spectra of compound 9 (2×10⁻⁵M) recorded in different solvents.
Figure S34: Comparison of emission spectrum of compound 5(2×10^{-5}M) recorded in different solvents
Figure S35: Comparison of emission spectrum of compound 6 (2×10^{-5}M) recorded in different solvents
Figure S36: Comparison of emission spectrum of compound 8 (2×10⁻⁵M) recorded in different solvents.
Figure S37: Comparison of emission spectrum of compound 9 (2×10⁻⁵ M) recorded in different solvents
Figure S38. Job’s plots of compound 5
Figure 39. Supramolecular assembly through a weak intermolecular hydrogen bonding network in BODIPY 5.
Figure 40. Supramolecular assembly through intermolecular-hydrogen bonding network (between Methyl-H and F (2.247 Å) which is attached to boron in Compound 6.
Figure 41. Optical response of BODIPY 5 after addition of different anions
Experimental section

General: THF and n-hexane was dried over sodium benzophenone ketyl, BF$_3$, Et$_2$O, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and TFA were used as obtained. All other chemicals used for the synthesis were reagent grade unless otherwise specified. Column chromatography was performed on silica (60-120 mesh) or alumina. All the 1H NMR spectra (δ in ppm) were recorded using Bruker 400 and 500 MHz instruments. 13C NMR spectra were recorded on Bruker operating at 100.6 and 125.7 MHz. TMS was used as an internal reference for 1H and 13C (δ 77.0 signal) in CDCl$_3$. For UV-vis, the stock solution of compound 5 (2×10^{-5} M) was prepared by using spectroscopic grade toluene.

Their corresponding UV-vis was recorded at 298 K. In 1H NMR titration, the spectra were measured on 400 MHz NMR spectrometer. A solution of 5 in CDCl$_3$ was prepared (2×10^{-5} M), and a 0.4 mL portion of this solution was transferred to a 5-mm NMR tube. A small aliquot of Bu$_4$NF in CDCl$_3$ was added in an incremental fashion, and their corresponding spectra were recorded.
X-ray crystal structure analysis:

Single-crystal X-ray structure analysis was performed on a Rigaku Saturn 724 diffractometer that was equipped with a low-temperature attachment. Data were collected at 100 K using graphite-monochromated Mo-K\(_\alpha\) radiation (\(\lambda_{\alpha} = 0.71073\ \text{Å}\)) with the \(\omega\)-scan technique. The data were reduced by using CrystalClear-SM Expert 2.1 b24 software. The structures were solved by direct methods and refined by least-squares against \(F^2\) utilizing the software packages SHELXL-97,\(^{33}\) SIR-92,\(^{34}\) and WINGX.\(^{35}\) All non-hydrogen atoms were refined anisotropically.

References:

Figure 42. Absorption spectra of compound 5 (2×10⁻⁵M) and after addition of HPO₄²⁻, H₂PO₄⁻ recorded in Toluene
Figure 43. Absorption spectral change of compound 5 (2×10⁻⁵M) and after addition of different equivalents of F⁻ (0-50 equiv.) recorded in CH₃OH.
Figure 44. Absorption spectral changes of BODIPY 5 (2×10^{-5} M) upon addition of increasing equivalents of F^{-} ions (0–15 equiv) in CH_{3}CN.
Figure 45. Absorption spectral changes of BODIPY 5 (2×10⁻⁵ M) upon addition of increasing equivalents of F⁻ ions (0–50 equiv) in CH₃CN:H₂O (9:1).