## **ELECTRONIC SUPPLEMENTARY DATA**

## Tuneable Ultra High Surface Area Specific Surface Area Mg/Al-CO<sub>3</sub> Layered Double Hydroxides

Chunping Chen,<sup>a</sup> Aunchana Wangriya,<sup>b</sup> Jean-Charles Buffet,<sup>a</sup> Dermot O'Hare<sup>a</sup>\*

<sup>*a*</sup> Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK. E-mail: <u>dermot.ohare@chem.ox.ac.uk</u>; Tel: +44 (0)1865 272686

<sup>b</sup> SCG Chemicals, 1 cementhai road, Bangsue, Bangkok, 10800, Thailand.

## Surface area theoretical prediction

A simply approach to estimate the theoretical specific surface area is shown as below: A simple supercell was constructed including 4 x 4 x 1unit cells. The formula of this LDH supercell was estimated from TGA results as  $Mg_{12}Al_4(OH)_{32}(CO_3)_2 \cdot 5.6(H_2O) \cdot 1.92(CH3COCH3)$ . The cell parameters *a* and *c* are 3.05 and 7.78 Å, respectively (obtained from XRD).

The volume of a supercell  $(V_{sc})$  is:

$$V_{sc} = \frac{\sqrt{3}}{2} (4a)^2 \times c$$

The density of the LDH  $(\rho)$  can be:

$$\rho = \frac{M}{N_A \times V_{sc}}$$

where, *M* is the molecular mass of  $Mg_{12}Al_4(OH)_{32}(CO_3)_2 \bullet 5.6(H_2O) \bullet 1.92(CH3COCH3)$ , *N<sub>A</sub>* is Avogadro's number (6.022×10<sup>23</sup>).

To simplify, assume the LDH particles are cylinder shape, the total surface area ( $S_{particle}$ ) of a LDH particle can be obtained from its particle size (diameter d) and thickness (t).

$$S_{particle} = 2 \times \pi \times (\frac{d}{2})^2 + \pi \times d \times t$$

The volume of a LDH particle  $(V_{particle})$  is :

$$V = \pi \times (\frac{d}{2})^2 \times t$$

The specific surface area (SSA) is:

$$SSA = \frac{S_{particle}}{\rho \times V_{particle}}$$



**Fig. S1** XRD pattern of Mg<sub>3</sub>Al-CO<sub>3</sub> LDH (prepared at pH = 10) with different particle sizes (A) 200 nm, (B) 50 nm and (C) 20 nm. (\*) are the Bragg diffraction from the sample holder.



**Figure S2.** Specific surface area and LDH layers of 3 g AMO-LDH flowers dispersed in acetone (300 mL) for different durations.



**Figure S3.** Specific surface area and LDH layers of 3 g AMO-LDH flowers washed with acetone (300 mL) for different dispersion cycles.



**Figure S4.** Specific surface area and LDH layers of 3 g AMO-LDH plates treated with different volumes of acetone.



**Figure S5.** Specific surface area and LDH layers of 3 g AMO-LDH plates washed with acetone (300 mL) for different dispersion cycles.

**Table S1.** Specific surface area of AMO-LDH plates dried in different methods

| Drying method | Specific s <b>urface area (m<sup>2</sup>/g)</b> |
|---------------|-------------------------------------------------|
| Oven          | 141                                             |
| Vacuum        | 180                                             |
| Spray dryer   | 248                                             |



**Figure S6.** XRD pattern of  $Mg_3Al-CO_3$  LDH (prepared a pH = 10) (A) without AMOST treatment, (B) with AMOST treatment. (\*) are the Bragg diffraction from the sample holder.