SUPPORTING INFORMATION

General

1H, 13C and 19F NMR spectra were measured on a Bruker AV300M (300 MHz) spectrometer. Chemical shifts of 1H NMR were expressed in parts per million down field from tetramethylsilane as an internal standard ($\delta = 0$) in CDCl$_3$. Chemical shifts of 13C NMR were expressed in parts per million in CDCl$_3$ as an internal standard ($\delta = 77.0$). Chemical shifts of 19F NMR were expressed in parts per million downfield from BTF as an external standard ($\delta = -63.24$) in CDCl$_3$. Important NMR data were tabulated in following order: multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, quint: quintet, sext: sextet, sept: septet, m: multiplet, brs: broad singlet, brm: broad multiplet) and coupling constant (J (Hz)).

IR spectra were measured on a JASCO FT/IR-4200 spectrometer.

Mass spectra were measured on a JEOL JMS-T100CS.

Analytical thin layer chromatography (TLC) was performed on a glass plates pre-coated with silica-gel (Merck Kieselgel 60 F$_{254}$, layer thickness 0.25 mm). Visualization was accomplished by UV light (254 nm), anisaldehyde, KMnO$_4$ and phosphomolybdic acid.

Column chromatography was performed on KANTO Silica Gel 60N (spherical, neutral).

Anhydrous diethyl ether, tetrahydrofuran, dichloromethane and 1,4-dioxane were purchased from Kanto Chemical Co., Inc. Anhydrous dimethylsulfoxide was purchased from Sigma-Aldrich Co., Inc.

All experiments were carried out under argon atmosphere otherwise noted.

General procedure for the perfluoroalkylation of aldehydes, ketones and esters

To a solution of Cp$_2$ZrCl$_2$ (70.2 mg, 0.24 mmol) in Et$_2$O (2.4 mL) was added 6BuMgCl (2.0 M in Et$_2$O, 0.12 mL, 0.24 mmol), 1,4-dioxane (23 μL, 0.27 mmol) and perfluorohexyl iodide (78 μL, 0.36 mmol) (and methylaluminoxane (10 wt% in toluene, 0.16 mL, 0.24 mmol)) at -78°C. After stirring at -78°C for 1 h, benzaldehyde (1b) (20 μL, 0.20 mmol) was added. The reaction mixture was then stirred at room temperature for 1 h, quenched by 1 N HCl and extracted three times with Et$_2$O. Combined organic layer was dried over Na$_2$SO$_4$ and the solvent was removed in vacuo. The crude product was purified by silica gel column chromatography (Hexane/AcOEt = 20/1) to give 2,2,3,3,4,4,5,5,7,7,7-tridecafluoro-1-phenylheptan-1-ol (2b) (85.2 mg, >99%).

(8R, 9S, 13S, 14S, 17S)-3-Methoxy-13-methyl-17-(pentafluoroethyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-17-ol (2a)$^{[SI]}$

1H NMR (300 MHz, CDCl$_3$) δ 1.00 (s, 3H), 1.28-1.60 (m, 4H), 1.71-1.96 (m, 6H), 2.09 (brs, 1H), 2.26 (td, $J = 11.1$ and 4.2, 1H), 2.33-2.49 (m, 2H), 2.86-2.91 (m, 2H), 3.79 (s, 3H), 6.65 (d, $J = 2.7$ Hz, 1H), 6.73 (dd, $J = 8.4$ and 7.2 Hz, 1H), 7.21 (d, $J = 8.4$ Hz, 1H).

13C NMR (75 MHz, CDCl$_3$) δ 15.2, 24.5, 26.7, 27.6, 29.7, 33.2 (dd, $J_{CF} = 6.8$ and 2.3 Hz), 33.5 (t, $J_{CF} = 3.0$ Hz), 39.5, 43.1, 50.4, 51.2, 55.2, 84.5 (t, $J_{CF} = 22.5$ Hz), 111.5, 112.7-126.6 (m, CF$_2$CF$_3$), 113.8, 126.3, 132.2, 137.8, 157.6.

19F NMR (282 MHz, CDCl$_3$) δ -77.1 (s, 3F), -118.5 (d, $J_{FF} = 272.7$ Hz, 1F), -119.9 (d, $J_{FF} = 272.7$ Hz, 1F).

HRMS (APCI-TOF) Calcd for C$_{21}$H$_{24}$F$_5$O$_2$ [M-H]: 403.1697, Found: 403.1693.
IR (KBr) 737, 908, 1218, 1506, 1609, 1719, 1871, 2069, 2928, 3629 cm\(^{-1}\)

2,2,3,3,4,4,5,6,6,7,7,7-Tridecafluoro-1-phenylheptan-1-ol (2b)

\[
\begin{align*}
\text{IR (KBr)} & \quad 702, 819, 1060, 1230, 1355, 1458, 1959, 3038, 3416 \\
\text{H NMR (300 MHz, CDCl}_3\) & \quad \delta 2.54 (d, J = 5.1 Hz, 1H), 5.21 (dd, J\text{HF} = 17.7 \text{ and } 5.4 \text{ Hz}, J = 5.4 \text{ Hz}, 1H), 7.41-7.49 (m, 5H).
\end{align*}
\]

13C NMR (75 MHz, CDCl\(_3\)) \(\delta 72.3 \text{ (dd}, J\text{CF} = 28.5 \text{ and } 22.5 \text{ Hz}, 1H), 104.6-122.9 \text{ (m, } (\text{CF}_2)_5\text{CF}_3), 128.0, 128.6, 129.7, 133.9.

19F NMR (282 MHz, CDCl\(_3\)) \(\delta -80.9 \text{ (t}, J\text{FF} = 9.3 \text{ Hz}, 3F), -117.4-(-127.3) \text{ (m, 10F).}

IR (KBr) 785, 963, 1231, 1348, 1513, 1589, 1932, 3052, 3341 cm\(^{-1}\).

2,2,3,3,4,4,4-Heptafluoro-1-(naphthalen-1-yl)butan-1-ol (2c)

\[
\begin{align*}
\text{IR (KBr)} & \quad 702, 819, 1060, 1230, 1355, 1458, 1959, 3038, 3416 \\
\text{H NMR (300 MHz, CDCl}_3\) & \quad \delta 2.70 (d, J = 5.1 Hz, 1H), 6.12 (ddd, J\text{HF} = 19.8 \text{ and } 3.9 \text{ Hz}, J = 3.9 \text{ Hz}, 1H), 7.51-7.61 (m, 3H), 7.83-8.03 (m, 4H).
\end{align*}
\]

13C NMR (75 MHz, CDCl\(_3\)) \(\delta 67.5 \text{ (dd}, J\text{CF} = 30.0 \text{ and } 21.8 \text{ Hz}, 1H), 106.4-128.5 \text{ (m, } (\text{CF}_2)_2\text{CF}_3), 122.7, 124.8, 125.2, 126.6, 126.9, 129.0, 130.2, 130.3, 131.4, 133.7.

19F NMR (282 MHz, CDCl\(_3\)) \(\delta -80.7 \text{ (t}, J\text{FF} = 10.2 \text{ Hz}, 3F), -115.9-(-117.0) \text{ (m, 1F), -124.4-(-127.9) (m, 3F).}

IR (KBr) 706, 1025, 1134, 1235, 1358, 1453, 1609, 1717, 2940, 3341 cm\(^{-1}\).

4,4,5,5,6,6,7,7,7-Nonafluoro-2-phenylheptan-3-ol (2d)

\[
\begin{align*}
\text{IR (KBr)} & \quad 706, 1025, 1134, 1235, 1358, 1453, 1609, 1717, 2940, 3341 \\
\end{align*}
\]

Physical data of mixture of the two isomers (67:33)

1H NMR (300 MHz, CDCl\(_3\)) \(\delta 1.44 \text{ (dd}, J = 6.9 \text{ and } 1.2 \text{ Hz, 3H, major), 1.47 (dd}, J = 7.5 \text{ and } 2.1 \text{ Hz, 3H, minor), 1.85 (d}, J = 8.4 \text{ Hz, 1H, minor), 2.11 (d}, J = 7.5 \text{ Hz, 1H, major), 3.29-3.37 (m, 1H), 4.18-4.34 (brm, 1H), 7.28-7.40 (m, 5H).}

13C NMR (75 MHz, CDCl\(_3\)) \(\delta 13.9, 18.9, 39.1, 39.8, 72.5 \text{ (dd, } J\text{CF} = 26.3 \text{ and } 20.3 \text{ Hz), 73.1 (dd, } J\text{CF} = 27.8 \text{ and } 21.8 \text{ Hz), 104.9-123.6 (m, } (\text{CF}_2)_3\text{CF}_3), 127.2, 127.6, 128.5, 128.8, 128.9, 140.0, 143.1.

19F NMR (282 MHz, CDCl\(_3\)) \(\delta -81.0 \text{ (s}, 3F), -116.0-(-127.8) \text{ (m, 6F).}

IR (neat) 706, 1025, 1134, 1235, 1358, 1453, 1609, 1717, 2940, 3341 cm\(^{-1}\).
3,3,4,5,5,6,7,7,8,8,9,9,10,10-Heptadecafluoro-2-(pyridin-2-yl)decan-2-ol (2e)\[S1\]

\[
\begin{array}{c}
\text{H NMR} (300 \text{ MHz, CDCl}_3) \delta 1.75 (s, 3H), 6.51 (s, 1H), 7.36 (dd, J = 7.8 \text{ and } 4.8 \text{ Hz}, 1H), 7.51 (d, J = 7.8 \text{ Hz}, 1H), 7.80 (td, J = 7.8 \text{ and } 1.5 \text{ Hz}, 1H), 8.58 (d, J = 4.8 \text{ Hz}, 1H).
\end{array}
\]

\[
\begin{array}{c}
\text{**13C NMR} (75 \text{ MHz, CDCl}_3) \delta 23.0, 75.4 (t, J_{CF} = 24.0 \text{ Hz}), 104.5-124.1 (m, (CF}_2)_7\text{CF}_3), 121.6 (t, J_{CF} = 3.0 \text{ Hz}), 123.8, 137.5, 147.1, 155.9.
\end{array}
\]

\[
\begin{array}{c}
\text{**19F NMR} (282 \text{ MHz, CDCl}_3) \delta -80.9 (t, J_{FF} = 9.9 \text{ Hz}, 3F), -115.9-(-119.0) (m, 4F), -121.8-(-122.0) (m, 6F), -122.8 (s, 2F), -126.2 (s, 2F).
\end{array}
\]

HRMS (APCI-TOF) Calcd for C\(_{15}\)H\(_7\)F\(_{17}\)NO [M-H] - : 540.0256, Found: 540.0270. IR (KBr) 661, 764, 963, 1142, 1203, 1410, 1596, 1719, 2963, 3285 cm\(^{-1}\)

1-Nonafluorobutyl-1,2,3,4-tetrahydronaphthalen-1-ol (2f)\[S1\]

\[
\begin{array}{c}
\text{H NMR} (300 \text{ MHz, CDCl}_3) \delta 1.89-2.16 (m, 3H), 2.36-2.43 (m, 1H), 2.51 (s, 1H), 2.83-2.87 (m, 2H), 7.19 (d, J = 6.9 \text{ Hz}, 1H), 7.20-7.34 (m, 2H), 7.71 (d, J = 7.2 \text{ Hz}, 1H).
\end{array}
\]

\[
\begin{array}{c}
\text{**13C NMR} (75 \text{ MHz, CDCl}_3) \delta 18.5, 29.5, 33.0 (dd, J_{CF} = 7.5 \text{ and } 3.8 \text{ Hz}), 74.8 (dd, J_{CF} = 22.5 \text{ and } 21.0 \text{ Hz}), 104.2-123.8 (m, (CF}_2)_3\text{CF}_3), 126.6, 127.6 (t, J_{CF} = 3.8 \text{ Hz}), 129.1, 129.5, 134.0, 138.9.
\end{array}
\]

\[
\begin{array}{c}
\text{**19F NMR} (282 \text{ MHz, CDCl}_3) \delta -80.8 (t, J_{FF} = 7.9 \text{ Hz}, 3F), -116.8-(-118.8) (m, 2F), -120.3-(-121.4) (m, 1F), -124.2-(-125.4) (m, 1F), -126.5-(-127.7) (m, 1F).
\end{array}
\]

HRMS (APCI-TOF) Calcd for C\(_{14}\)H\(_{10}\)F\(_9\)O [M-H] -: 365.0588, Found: 365.0597. IR (neat) 692, 733, 1025, 1134, 1235, 1358, 1446, 1487, 2954, 3484 cm\(^{-1}\)

2-Pentyl-1-(heptadecafluorooctyl)cyclopent-2-enol (2g)\[S1\]

\[
\begin{array}{c}
\text{H NMR} (300 \text{ MHz, CDCl}_3) \delta 0.90 (t, J = 6.9 \text{ Hz}, 3H), 1.31-1.36 (m, 3H), 1.46-1.63 (m, 2H), 1.99-2.17 (m, 3H), 2.25 (s,1H), 2.30-2.58 (m, 3H), 5.83 (s,1H).
\end{array}
\]

\[
\begin{array}{c}
\text{**13C NMR} (75 \text{ MHz, CDCl}_3) \delta 14.0, 22.5, 26.8, 27.8, 29.2, 31.8, 34.5, 87.7 (dd, J_{CF} = 25.5 \text{ and } 20.3 \text{ Hz}), 104.1-122.9 (m, (CF}_2)_7\text{CF}_3), 132.5, 142.6.
\end{array}
\]

\[
\begin{array}{c}
\text{**19F NMR} (282 \text{ MHz, CDCl}_3) \delta -81.0 (t, J_{FF} = 9.6 \text{ Hz}, 3F), -116.8-(-119.7) (m, 4F), -121.8 (brm, 6F), -122.8 (s, 2F), -126.3 (s, 2F).
\end{array}
\]

HRMS (APCI-TOF) Calcd for C\(_{18}\)H\(_{16}\)F\(_{17}\)O [M-H] -: 571.0930, Found: 571.0937. IR (neat) 1072, 1147, 1208, 1242, 1371, 1467, 1609, 2859, 2933, 3464 cm\(^{-1}\)
(E)-4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluoro-3-methyl-1-phenylnon-1-en-3-ol (2h)[S1]

\[
\begin{align*}
\text{Me} & \text{OH} \\
\text{(CF}_2\text{)}_5\text{CF}_3
\end{align*}
\]

\(^1\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 1.63 (s, 3H), 2.39 (s, 1H), 6.34 (d, \text{ } J = 16.2 \text{ Hz, } 1H), 6.87 (d, \text{ } J = 16.2 \text{ Hz, } 1H), 7.26-7.44 (m, 5H).
\(^13\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 23.3, 76.1 \text{ (t, } J_{\text{CF}} = 24.0 \text{ Hz), } 104.8-123.6 \text{ (m, (CF}_2\text{)}_5\text{CF}_3\text{), } 126.7, 127.0, 128.5, 128.9, 131.5, 136.0.
\(^19\text{F NMR (282 MHz, CDCl}_3\text{)} \delta -80.9 \text{ (t, } J_{\text{FF}} = 9.9 \text{ Hz, } 3F), -117.8-(-121.9 \text{ (m, } 6F), -122.8 \text{ (s, } 2F), -126.2 \text{ (s, } 2F).
\text{HRMS (APCI-TOF) Calcd for } \text{C}_{16}\text{H}_{10}\text{F}_{13}\text{O [M-H]} : \text{465.0524, Found: 465.0504.}
\text{IR (KBr) 565, 743, 977, 1238, 1368, 1493, 1706, 1953, 3025, 3636 cm}^{-1}
\]

1-Heptadecafluoroctyl-cyclohexanol (2i)[S1]

\[
\text{HO (CF}_2\text{)}_7\text{CF}_3
\]

\(^1\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 1.18-1.25 (m, 1H), 1.63-1.74 (m, 7H), 1.83-1.92 (m, 3H).
\(^13\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 20.3, 25.0, 29.9 \text{ (t, } J_{\text{CF}} = 2.3 \text{ Hz), } 75.3 \text{ (t, } J_{\text{CF}} = 22.5 \text{ Hz), } 105.1-123.3 \text{ (m, (CF}_2\text{)}_7\text{CF}_3\text{).}
\(^19\text{F NMR (282 MHz, CDCl}_3\text{)} \delta -81.0 \text{ (t, } J_{\text{FF}} = 9.9 \text{ Hz, } 3F), -119.1 \text{ (s, } 2F), -121.6-(-126.2 \text{ (m, } 6F), -122.9 \text{ (s, } 2F), -126.2 \text{ (s, } 2F).
\text{HRMS (APCI-TOF) Calcd for } \text{C}_{14}\text{H}_{10}\text{F}_{17}\text{O [M-H]} : \text{517.0460, Found: 517.0456.}
\text{IR (KBr) 644, 909, 991, 1052, 1228, 1464, 1717, 2947, 3457, 3606 cm}^{-1}
\]

(1\text{r},3\text{r},5\text{r},7\text{r})2-(Perfluoropropyl)adamantan-2-ol (2j)[S1]

\[
\text{OH (CF}_2\text{)}_2\text{CF}_3
\]

\(^1\text{H NMR (300 MHz, C}_6\text{D}_6\text{)} \delta 1.21-1.26 (m, 3H), 1.43-1.58 (m, 6H), 1.95-2.04 (m, 6H).
\(^13\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 26.3, 27.0, 33.0, 33.2 \text{ (t, } J_{\text{CF}} = 3.8 \text{ Hz), } 33.5, 38.4, 76.7 \text{ (t, } J_{\text{CF}} = 21.8 \text{ Hz), } 107.1-125.0 \text{ (m, (CF}_2\text{)}_2\text{CF}_3\text{).}
\(^19\text{F NMR (282 MHz, C}_6\text{D}_6\text{)} \delta -80.3 \text{ (t, } J_{\text{FF}} = 10.2 \text{ Hz, } 3F), -113.0 \text{ (brm, } 2F), -122.9 \text{ (s, } 2F).
\text{HRMS (APCI-TOF) Calcd for } \text{C}_{13}\text{H}_{14}\text{F}_{7}\text{O [M-H]} : \text{319.0933, Found: 319.0928.}
\text{IR (KBr) 558, 730, 881, 943, 1225, 1335, 1458, 1719, 2928, 3478 cm}^{-1}
\]

2,2,3,3,3-Pentafluoro-1-(naphthalen-1-yl)propan-1-one (2k)[S1]

\[
\begin{align*}
\text{OH} \\
\text{(CF}_2\text{)}_2\text{CF}_3
\end{align*}
\]

\(^1\text{H NMR (300 MHz, C}_6\text{D}_6\text{)} \delta 1.21-1.26 (m, 3H), 1.43-1.58 (m, 6H), 1.95-2.04 (m, 6H).
\(^13\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 26.3, 27.0, 33.0, 33.2 \text{ (t, } J_{\text{CF}} = 3.8 \text{ Hz), } 33.5, 38.4, 76.7 \text{ (t, } J_{\text{CF}} = 21.8 \text{ Hz), } 107.1-125.0 \text{ (m, (CF}_2\text{)}_2\text{CF}_3\text{).}
\(^19\text{F NMR (282 MHz, C}_6\text{D}_6\text{)} \delta -80.3 \text{ (t, } J_{\text{FF}} = 10.2 \text{ Hz, } 3F), -113.0 \text{ (brm, } 2F), -122.9 \text{ (s, } 2F).
\text{HRMS (APCI-TOF) Calcd for } \text{C}_{13}\text{H}_{14}\text{F}_{7}\text{O [M-H]} : \text{319.0933, Found: 319.0928.}
\text{IR (KBr) 558, 730, 881, 943, 1225, 1335, 1458, 1719, 2928, 3478 cm}^{-1}
Ethyl 3,3,4,4,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-2,2-dihydroxydecanoate (2l)

![Chemical Structure](image)

1H NMR (300 MHz, CDCl₃) δ 7.55-7.71 (m, 3H), 7.92-7.95 (m, 1H), 8.13-8.17 (m, 2H), 8.56 (d, J = 8.7 Hz, 1H).

13C NMR (75 MHz, CDCl₃) δ 104.2-129.8 (m, CF₂CF₃), 124.2, 125.0, 127.3, 128.2, 129.1, 129.4, 130.6 (t, JCF = 6.0 Hz), 131.0, 134.1, 135.7, 186.0 (t, JCF = 25.5 Hz).

19F NMR (282 MHz, CDCl₃) δ -81.1 (s, 3F), -114.3 (s, 2F).

IR (neat) 719, 773, 889, 1005, 1228, 1344, 1507, 1576, 1704, 3056 cm⁻¹

Methyl 4-(2,2,3,3,4,4,5,5,5-nonafluoro-1-hydroxypentyl)-benzoate (2m)

![Chemical Structure](image)

1H NMR (300 MHz, CDCl₃) δ 3.09 (brs, 1H), 3.92 (s, 3H), 5.28 (dd, JHF = 17.1 and 6.0 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 8.05 (d, J = 8.1 Hz, 2H).

13C NMR (75 MHz, CDCl₃) δ 52.5, 72.0 (dd, JCF = 28.5 and 22.5 Hz), 104.6-130.6 (m, (CF₂)₃CF₃), 128.2, 129.9, 131.3, 138.9, 166.9.

19F NMR (282 MHz, CDCl₃) δ -80.9 (t, JFF = 9.9 Hz, 3F), -120.4 (s, 2F), -121.2 (s, 2F), -122.0 (s, 2F), -122.9 (s, 2F), -126.3 (s, 2F).

IR (KBr) 537, 723, 888, 1211, 1344, 1706, 1953, 2970, 3458 cm⁻¹

Methyl 2-hydroxy-1-methyl-2-(perfluorohexyl)cyclopentanecarboxylate (2n)

![Chemical Structure](image)

1H NMR (300 MHz, CDCl₃) δ 3.09 (brs, 1H), 3.92 (s, 3H), 5.28 (dd, JHF = 17.1 and 6.0 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 8.05 (d, J = 8.1 Hz, 2H).

13C NMR (75 MHz, CDCl₃) δ 52.5, 72.0 (dd, JCF = 28.5 and 22.5 Hz), 104.6-130.6 (m, (CF₂)₃CF₃), 128.2, 129.9, 131.3, 138.9, 166.9.

19F NMR (282 MHz, CDCl₃) δ -80.9 (t, JFF = 9.9 Hz, 3F), -120.4 (s, 2F), -121.2 (s, 2F), -122.0 (s, 2F), -122.9 (s, 2F), -126.3 (s, 2F).

IR (KBr) 537, 723, 888, 1211, 1344, 1706, 1953, 2970, 3458 cm⁻¹
\[^1\text{H NMR (300 MHz, CDCl}_3 \delta 1.41 (s, 3\text{H}), 1.71-1.81 (m, 1\text{H}), 1.84-2.20 (m, 4\text{H}), 2.42-2.52 (m, 1\text{H}), 2.45 (s, 1\text{H}), 3.69 (s, 3\text{H}). \]

\[^{13}\text{C NMR (75 MHz, CDCl}_3 \delta 18.8, 20.6, 33.2 (t, J_{CF} = 5.3 \text{ Hz}), 52.3, 56.8, 85.6 (dd, J_{CF} = 26.3 \text{ and } 21.0 \text{ Hz}), 106.5-123.1 \text{ (m, (CF}_2)_{5}CF_3), 175.2. \]

\[^{19}\text{F NMR (282 MHz, CDCl}_3 \delta -80.9 (t, J_{FF} = 9.2 \text{ Hz}, 3\text{F}), -114.7-(-115.9) (m, 1\text{F}), -117.5-(-118.6) (m, 1\text{F}), -119.5-(-121.4) (m, 2\text{F}), -121.7-(-121.8) (brm, 2\text{F}), -122.8 (s, 2\text{F}), -126.2 (s, 2\text{F}). \]

HRMS (APCI-TOF) Calcd for C\text{14}H\text{12}F\text{13}O\text{3} [M-H]^-: 475.0579, Found: 475.0590.

IR (KBr) 644, 855, 1005, 1141, 1235, 1364, 1467, 1717, 2968, 3477 cm\(^{-1}\).

Synthesis of non-commercially available ketones

3-O-Methylestrone\([\text{S1}]\) (1a)

\[
\text{Estrone (SI-1) (1.35 g, 5.00 mmol) was added to a suspension of KOH (1.12 g, 20.0 mmol) in DMSO (30 mL). After adding MeI (0.62 mL, 10.0 mmol), the resulting mixture was stirred at room temperature for 12 h. Then the crude was quenched with water and extracted three times with CH}_2Cl_2. The combined organic layers were washed three times with water, dried over Na}_2SO}_4 and concentrated in vacuo. Silica gel column chromatography (Hexane/AcOEt = 9/1) of the crude afforded 1a (1.16 g, 82%).}

\[^{1}\text{H NMR (300 MHz, CDCl}_3 \delta 0.91 (s, 3\text{H}), 1.37-1.69 (m, 6\text{H}), 1.91-2.28 (m, 5\text{H}), 2.38-2.43 (m, 1\text{H}), 2.51 (dd, J = 18.3 \text{ and } 8.7 \text{ Hz, 1H}), 2.89-2.94 (m, 2\text{H}), 3.78 (s, 3\text{H}), 6.66 (d, J = 2.4 \text{ Hz, 1H}), 6.73 (dd, J = 8.4 \text{ and } 2.4 \text{ Hz, 1H}), 7.21 (d, J = 8.4 \text{ Hz, 1H}).} \]

Methyl 1-methyl-2-oxocyclopentanecarboxylate\([\text{S2}]\) (1n)

\[
\text{To a suspension of NaH (60% in mineral oil, 0.44 g, 11 mmol) in THF, methyl cyclopentan-one-2-carboxylate (SI-2) (1.35 mL, 10.0 mmol) and MeI (1.25 mL, 20.0 mmol) was added at 0 °C. After stirring at room temperature for 1 h, the reaction was quenched with saturated aq. NH}_4Cl and extracted three times with Et}_2O. Combined organic layer was dried over Na}_2SO}_4 and solvent was removed in vacuo. The crude product was purified by silica gel column chromatography (Hexane/AcOEt = 10/1) to furnish 1n (1.37 g, 88%).}

\[^{1}\text{H NMR (300 MHz, CDCl}_3 \delta 1.20 (s, 3\text{H}), 1.72-1.87 (m, 2\text{H}), 1.90-2.02 (m, 1\text{H}), 2.15-2.33 (m, 2\text{H}), 2.36-2.46 (m, 1\text{H}), 3.59 (s, 3\text{H}). \]

\[^{13}\text{C NMR (75 MHz, CDCl}_3 \delta 19.3, 19.5, 36.0, 37.5, 52.3, 55.8, 172.7, 215.6. \]
IR (neat) 844, 940, 1063, 1158, 1275, 1452, 1732, 1752, 2887, 2962 cm\(^{-1}\)

Procedure for Scheme 4 (Perfluoroalkyl Grignard reagent)

To a solution of \(\text{^6}\text{BuMgCl} (2.0 \text{ M in Et}_2\text{O}, 0.12 \text{ mL, } 0.24 \text{ mmol})\) in Et\(_2\)O (2.4 mL) was added perfluorohexyl iodide (78 \(\mu\)L, 0.36 mmol) at -78 °C . After stirring at -78 °C for 1 h, Cp\(_2\)ZrCl\(_2\) (70.2 mg, 0.24 mmol) and 1,4-dioxane (0.23 \(\mu\)L, 0.27 mmol) was added and the reaction mixture was stirred at -20 °C for 2 h before benzaldehyde (1b) (20 \(\mu\)L, 0.20 mmol) was added. After stirring at room temperature for 1 h, the reaction was quenched by 1 \(N\) HCl and extracted three times with Et\(_2\)O. Combined organic layer was dried over Na\(_2\)SO\(_4\) and the solvent was removed *in vacuo*. The yield of 2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-1-phenylheptan-1-ol (2b) (56%) was determined by \(^1\)H NMR using 1,1,2,2-tetrachloroethane as an internal standard.

Procedure for Scheme 4 (Perfluoroalkyl lithium reagent)

To a solution of MeLi (1.6 M in Et\(_2\)O, 0.15 mL, 0.24 mmol) in Et\(_2\)O (2.4 mL) was added perfluorohexyl iodide (78 \(\mu\)L, 0.36 mmol) at -78 °C. After stirring at -78 °C for 15 min, Cp\(_2\)ZrCl\(_2\) (70.2 mg, 0.24 mmol) was added and the reaction mixture was stirred at -20 °C for 2 h before benzaldehyde (1b) (20 \(\mu\)L, 0.20 mmol) was added. After stirring at room temperature for 1 h, the reaction was quenched by 1 \(N\) HCl and extracted three times with Et\(_2\)O. Combined organic layer was dried over Na\(_2\)SO\(_4\) and the solvent was removed *in vacuo*. The crude mixture was analyzed by \(^1\)H NMR.

Procedure for Scheme 5

To a solution of Cp\(_2\)ZrCl\(_2\) (70.2 mg, 0.24 mmol) in Et\(_2\)O (2.4 mL) was added \(^6\text{BuMgCl} (2.0 \text{ M in Et}_2\text{O, } 0.12 \text{ mL, } 0.24 \text{ mmol}), 1,4-dioxane (23 \(\mu\)L, 0.27 mmol) and perfluorohexyl iodide (78 \(\mu\)L, 0.36 mmol) in this order at -78 °C. After stirring at -78 °C for 1 h, 1,4-dioxane (23 \(\mu\)L, 0.27 mmol) and methylaluminoxane (10 wt% in toluene, 0.16 mL, 0.24 mmol) were added. After the mixture was stirred at 0 °C for 2 min, styrene oxide (3a) (23 \(\mu\)L, 0.20 mmol) was added. The reaction mixture was stirred at room temperature for 1 h, quenched by 1 \(N\) HCl and extracted three times with Et\(_2\)O. Combined organic layer was dried over Na\(_2\)SO\(_4\) and removed solvent *in vacuo*. The crude product was purified by silica gel column chromatography (Hexane/AcOEt = 20/1) to give 3,3,4,4,5,5,6,6,7,7,7,8,8,8-tridecafluoro-1-phenyloctan-2-ol (4a) (37.9 mg, 43%) and 2-chloro-2-phenylethanol[^3] (6) (3.1 mg, 10%).

General procedure for the perfluoroalkylation of epoxides

To a solution of Cp\(_2\)ZrCl\(_2\) (70.2 mg, 0.24 mmol) in Et\(_2\)O (2.4 mL) was added \(^6\text{BuMgCl} (2.0 \text{ M in Et}_2\text{O, } 0.12 \text{ mL, } 0.24 \text{ mmol}) and perfluorohexyl iodide (78 \(\mu\)L, 0.36 mmol). After stirring at -78 °C for 1 h, 1,4-dioxane (23 \(\mu\)L, 0.27 mmol) and methylaluminoxane (10 wt% in toluene, 0.16 mL, 0.24 mmol) were added. After the mixture was stirred at 0 °C for 2 min, styrene oxide (3a) (23 \(\mu\)L, 0.20 mmol) was added. The reaction mixture was stirred at room temperature for 1 h, quenched by 1 \(N\) HCl and extracted three times with Et\(_2\)O. Combined organic layer was dried over Na\(_2\)SO\(_4\) and condensed *in vacuo*. The crude product was purified by silica gel column chromatography (Hexane/AcOEt = 20/1) to give 3,3,4,4,5,5,6,6,7,7,7,8,8,8-tridecafluoro-1-phenyloctan-2-ol (4a) (77.5 mg, 88%).

3,3,4,4,5,5,6,6,7,7,7,8,8,8-Tridecafluoro-1-phenyloctan-2-ol (4a)
1H NMR (300 MHz, CDCl$_3$) δ 2.28 (d, $J = 6.3$ Hz, 1H), 2.87 (dd, $J = 14.1$ and 10.5 Hz, 1H), 3.15 (d, $J = 14.1$ Hz, 1H), 4.26-4.38 (m, 1H), 7.27-7.42 (m, 5H).

13C NMR (75 MHz, CDCl$_3$) δ 35.5, 71.1 (dd, $J_{CF} = 28.5$ and 21.8 Hz), 104.2-123.4 (m, (CF$_2$)$_5$CF$_3$), 127.2, 128.8, 129.5, 135.7.

19F NMR (282 MHz, CDCl$_3$) δ -81.1 (t, $J_{FF} = 9.9$ Hz, 3F), -119.9-(-127.6) (m, 10F).

IR (neat) 651, 706, 1147, 1201, 1249, 1358, 1460, 3035, 3531 cm$^{-1}$

3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluoro-1-(4-methoxy-phenyl)octan-2-ol (4b)

1H NMR (300 MHz, CDCl$_3$) δ 2.09 (d, $J = 6.3$ Hz, 1H), 2.82 (dd, $J = 14.1$ and 10.2 Hz, 1H), 3.07 (d, $J = 14.1$ Hz, 1H), 3.80 (s, 3H), 4.28-4.31 (m, 1H), 6.88 (d, $J = 8.4$ Hz, 2H), 7.18 (d, $J = 8.4$ Hz, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 34.6, 55.3, 71.1 (dd, $J_{CF} = 28.5$ and 23.3 Hz), 100.2-123.4 (m, (CF$_2$)$_5$CF$_3$), 114.3, 127.3, 130.6, 158.9.

19F NMR (282 MHz, CDCl$_3$) δ -80.9 (t, $J_{FF} = 9.6$ Hz, 3F), -120.1-(-127.3) (m, 10F).

HRMS (APCI-TOF) Calcd for C$_{15}$H$_{10}$F$_{13}$O$_2$ [M-H]$-$: 469.0473, Found: 469.0488.

IR (KBr) 748, 885, 967, 1124, 1131, 1240, 1357, 2921, 3030, 3454 cm$^{-1}$

(E)-5,5,6,7,8,8,8-Nonafluoro-1-phenyl-oct-1-en-4-ol (4c)

1H NMR (300 MHz, CDCl$_3$) δ 2.24 (d, $J = 7.2$ Hz, 1H), 2.58-2.68 (m, 1H), 2.72-2.79 (m, 1H), 4.21-4.35 (m, 1H), 6.18-6.28 (m, 1H), 6.61 (d, $J = 15.6$ Hz, 1H), 7.26-7.42 (m, 5H).

13C NMR (75 MHz, CDCl$_3$) δ 33.2, 93.2 (dd, $J_{CF} = 27.8$ and 22.5 Hz), 107.1-119.8 (m, (CF$_2$)$_3$CF$_3$), 122.7, 126.3, 127.9, 130.6, 136.5.

19F NMR (282 MHz, CDCl$_3$) δ -80.9 (t, $J_{FF} = 9.0$ Hz, 3F), -120.1-(-127.3) (m, 6F).

IR (KBr) 748, 885, 967, 1124, 1131, 1240, 1357, 2921, 3030, 3454 cm$^{-1}$

(Z)-2-Bromo-5,5,6,7,8,8,9,9,10,10,10-tridecafluoro-1-phenyldec-1-en-4-ol (4d)

1H NMR (300 MHz, CDCl$_3$) δ 2.37 (d, $J = 6.3$ Hz, 1H), 2.92-3.07 (m, 2H), 4.57-4.71 (m, 1H), 6.95 (s, 1H), 7.30-7.41 (m, 3H), 7.60 (d, $J = 6.9$ Hz, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 43.5, 68.2 (dd, $J_{CF} = 28.9$ and 23.3 Hz), 107.0-123.2 (m, (CF$_2$)$_5$CF$_3$), 119.5,
128.4, 128.5, 129.1, 132.9, 135.2.

\(^{19}\)F NMR (282 MHz, CDCl\(_3\)) \(\delta\) -80.8 (t, \(J_{\text{FF}} = 9.6\) Hz, 3F), -119.7-(-127.3) (m, 10F).

HRMS (APCI-TOF) Calcd for C\(_{16}\)H\(_8\)BrF\(_{13}\)O [M-H]: 542.9629, Found: 545.9630.

IR (neat) 692, 753, 916, 1147, 1242, 1317, 1371, 1446, 3056, 3410 cm\(^{-1}\)

\((E)-8\)-(Benzylxy)-1,1,1,2,2,3,3-heptafluorooct-6-en-4-ol (4e)

\[
\text{BnO} \quad \begin{array}{c}
\text{(CF)}_2 \text{CF}_3
\end{array}
\]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 2.35-2.45 (m, 1H), 2.50-2.57 (m, 1H), 2.78 (d, \(J = 6.6\) Hz, 1H), 4.01-4.11 (m, 3H), 4.53 (s, 2H), 5.68-5.86 (m, 2H), 7.28-7.39 (m, 5H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 32.4, 68.9 (dd, \(J_{\text{CF}} = 28.5\) and 23.3 Hz), 72.5, 106.1-123.5 (m, (CF\(_2\))\(_2\)CF\(_3\)), 127.1, 127.8, 127.8, 128.5, 131.7, 137.9.

\(^{19}\)F NMR (282 MHz, CDCl\(_3\)) \(\delta\) -80.9 (t, \(J_{\text{FF}} = 10.2\) Hz, 3F), -121.0 (dd, \(J_{\text{FF}} = 282.4\) Hz and \(J_{\text{FH}} = 5.5\) Hz, 1F), -124.7-(-128.3) (m, 3F).

IR (neat) 733, 916, 978, 1114, 1228, 1351, 1460, 2859, 2933, 3395 cm\(^{-1}\)

2-(Perfluoroctyl)-2,3-dihydro-1H-inden-2-ol (4f)

\[
\text{HO} \quad \begin{array}{c}
\text{(CF)}_2 \text{CF}_3
\end{array}
\]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 2.23 (s, 1H), 3.10 (d, \(J = 16.8\) Hz, 1H), 3.58 (d, \(J = 16.8\) Hz, 1H), 7.24-7.31 (m, 4H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 42.8, 84.0 (t, \(J_{\text{CF}} = 25.5\) Hz), 104.8-120.7 (m, (CF\(_2\))\(_7\)CF\(_3\)), 125.2, 127.5, 138.4.

\(^{19}\)F NMR (282 MHz, CDCl\(_3\)) \(\delta\) -80.9 (t, \(J_{\text{FF}} = 9.6\) Hz, 3F), -118.4 (s, 2F), -119.4 (s, 2F), -121.8-(-121.8) (brm, 6F), -158.3 (s, 2F), -162.2 (s, 2F).

IR (KBr) 659, 753, 1072, 1208, 1725, 1935, 3035, 3579 cm\(^{-1}\)

2,2,3,3,3-Pentafluoro-1-(1,2,3,4-tetrahydronaphthalen-1-yl)propan-1-ol (4g)

\[
\text{HO} \quad \begin{array}{c}
\text{CF}_2 \text{CF}_3
\end{array}
\]

Physical data of mixture of the two isomers (52:48)

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 1.59-1.71 (m, 1H), 1.87-2.09 (m, 4H), 2.68-2.92 (m, 2H), 3.38-3.43 (brm, 1H), 4.02-4.15 (m, 1H, major), 4.57-4.69 (m, 1H, minor), 7.12-7.24 (m, 4H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 18.4, 21.8, 22.6 (d, \(J_{\text{CF}} = 3.8\) Hz), 28.1 (d, \(J_{\text{CF}} = 3.0\) Hz), 28.5, 29.9, 37.5, 38.2, 71.7 (dd, \(J_{\text{CF}} = 28.5\) and 22.5 Hz), 72.3 (dd, \(J_{\text{CF}} = 27.0\) and 19.5 Hz), 110.4-125.0 (m, CF\(_2\)CF\(_3\)), 126.0, 126.6, 126.7, 127.5, 127.9, 129.9, 130.2, 130.9 (d, \(J_{\text{CF}} = 3.8\) Hz), 132.3, 135.1, 139.1, 140.2.

\(^{19}\)F NMR (282 MHz, CDCl\(_3\)) \(\delta\) -81.8 (s, 3F, minor), -82.8 (s, 3F, major), -120.1 (d, \(J_{\text{FF}} = 276.0\) Hz, 1F,
major), -123.0 (d, $J_{FF} = 276.1$ Hz, 1F, minor), -127.9 (dd, $J_{CF} = 276.1$ Hz and $J_{FH} = 22.3$ Hz, 1F, minor), -131.6 (dd, $J_{FF} = 276.0$ Hz and $J_{FH} = 22.4$ Hz, 1F, major).

HRMS (APCI-TOF) Calcd for C$_{13}$H$_{12}$F$_5$O [M-H]: 279.0808, Found: 279.0806.

IR (neat) 740, 1038, 1120, 1195, 1244, 1453, 1493, 2872, 2947, 3538 cm$^{-1}$

5,5,6,6,7,7,8,8,8-Nonafluoro-1-phenyloct-1-yn-4-ol (4h)

![Chemical structure](image)

1H NMR (300 MHz, CDCl$_3$) δ 2.69 (d, $J = 6.9$ Hz, 1H), 2.86-3.02 (m, 2H), 4.38-4.44 (m, 1H), 7.29-7.45 (m, 5H).

13C NMR (75 MHz, CDCl$_3$) δ 21.8 (t, $J_{CF} = 0.4$ Hz), 68.3 (dd, $J_{CF} = 29.3$ and 22.5 Hz), 82.5, 84.4, 99.8-129.5 (m, (CF$_2$)$_3$CF$_3$), 122.6, 128.5, 128.7, 131.9.

19F NMR (282 MHz, CDCl$_3$) δ -80.9 (t, $J_{FF} = 8.3$ Hz, 3F), -119.6-(-128.5) (m, 6F).

HRMS (APCI-TOF) Calcd for C$_{14}$H$_8$F$_9$O [M-H]: 363.0431, Found: 363.0433.

IR (neat) 755, 885, 1131, 1233, 1350, 1493, 1678, 2927, 3064, 3488 cm$^{-1}$

5,5,6,6,7,7,8,8,9,9,10,10-Tridecafluoro-1-(4-methoxyphenyl)dec-1-yn-4-ol (4i)

![Chemical structure](image)

1H NMR (300 MHz, CDCl$_3$) δ 2.70 (d, $J = 7.2$ Hz, 1H), 2.84-3.00 (m, 2H), 3.91 (s, 3H), 4.34-4.46 (m, 1H), 6.84 (d, $J = 8.7$ Hz, 2H), 7.36 (d, $J = 8.7$ Hz, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 21.8, 55.4, 68.3 (dd, $J_{CF} = 29.3$ and 22.5 Hz), 81.0, 84.4, 106.4-129.0 (m, (CF$_2$)$_3$CF$_3$), 114.1, 114.7, 133.3, 159.9.

19F NMR (282 MHz, CDCl$_3$) δ -80.8 (t, $J_{FF} = 9.3$ Hz, 3F), -119.8-(-128.3) (m, 10F).

HRMS (APCI-TOF) Calcd for C$_{17}$H$_{10}$F$_{13}$O$_2$ [M-H]: 493.0473, Found: 493.0459.

IR (KBr) 695, 826, 1032, 1245, 1506, 1603, 1719, 2852, 2970, 3313 cm$^{-1}$

8-((tert-Butyldiphenylsilyl)oxy)-1,1,1,2,2-pentafluoro-4-methyloct-5-yn-3-ol (4j)

![Chemical structure](image)

Major

1H NMR (300 MHz, CDCl$_3$) δ 1.07 (s, 9H), 1.28 (d, $J = 7.2$ Hz, 3H), 2.38-2.46 (m, 3H), 2.98-3.01 (brm, 1H), 3.76 (t, $J = 6.9$ Hz, 2H), 4.07-4.19 (m, 1H), 7.37-7.47 (m, 6H), 7.67-7.70 (m, 4H).

13C NMR (75 MHz, CDCl$_3$) δ 15.0, 19.2, 22.8, 26.7, 28.0, 62.5, 70.5 (dd, $J_{CF} = 27.0$ and 20.3 Hz), 80.6, 80.7, 109.5-124.6 (m, CF$_2$CF$_3$), 127.7, 129.7, 133.6, 135.6.

19F NMR (282 MHz, CDCl$_3$) δ -82.7 (s, 3F), -121.4 (d, $J_{FF} = 276.9$ Hz, 1F), -130.0 (dd, $J_{FF} = 276.9$ Hz and $J_{FH} = 20.9$ Hz, 1F).

HRMS (APCI-TOF) Calcd for C$_{25}$H$_{28}$F$_3$O$_2$Si [M-H]: 483.1779, Found: 483.1764.
IR (neat) 699, 733, 822, 1059, 1106, 1195, 1426, 2859, 2933, 3524 cm⁻¹

Minor

¹H NMR (300 MHz, CDCl₃) δ 1.06 (s, 9H), 1.33 (d, J = 6.9 Hz, 3H), 2.44 (td, J = 6.6 and 2.1 Hz, 2H), 2.69 (d, J = 10.5 Hz, 1H), 3.03-3.06 (m, 1H), 3.75 (t, J = 6.6 Hz, 2H), 3.79-3.84 (m, 1H), 7.36-7.47 (m, 6H), 7.66-7.69 (m, 4H).

¹³C NMR (75 MHz, CDCl₃) δ 19.2, 19.4, 22.8, 26.7, 27.3, 62.4, 70.8 (dd, J_CF = 28.5 and 21.8 Hz), 77.9, 83.5, 112.7-126.3 (m, CF₂CF₃), 127.7, 129.7, 133.5, 135.5.

¹⁹F NMR (282 MHz, CDCl₃) δ -82.3 (s, 3F), -122.0 (d, J_FF = 276.1 Hz, 1F), -132.6 (dd, J_FF = 276.1 Hz and J_FH = 19.9 Hz, 1F).

HRMS (APCI-TOF) Calcd for C₂₅H₂₈F₅O₂Si [M-H]: 483.1779, Found: 483.1761.

IR (neat) 699, 733, 1018, 1201, 1426, 1589, 2859, 2933, 3491 cm⁻¹

Synthesis of non-commercially available epoxides

p-Methoxystyrene oxide[84] (3b)

In a round-bottom flask was placed p-anisaldehyde (SI-3) (3.04 mL, 25.0 mmol), CH₂Cl₂ (100 mL), 50 wt% aq. NaOH (100 mL), tetrabutylammonium bromide (0.11 g, 3.80 mmol) and trimethylsulphonium iodide (10.0 g, 50.0 mmol). The mixture was stirred at 50 °C for 4 days. Water was slowly added at 0 °C, the organic layer was removed and the aqueous solution was extracted three times with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and the solvent was removed. The crude product was purified by Kugelrohr distillation to give 3b (1.99 g, 53%).

¹H NMR (300 MHz, CDCl₃) δ 2.80 (dd, J = 5.4 and 2.7 Hz, 1H), 3.12 (dd, J = 5.4 and 4.2 Hz, 1H), 3.80 (s, 3H), 3.82 (dd, J = 4.2 and 2.7 Hz, 1H), 6.86-6.91 (m, 2H), 7.18-7.23 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 51.0, 52.2, 55.3, 114.0, 126.9, 129.5, 159.7.

2-Styryloxirane[86] (3d)

3d was prepared from trans-cinnamaldehyde (SI-5) (1.25 mL, 10.0 mmol) in a similar to a manner as 3b (1.01 g, 69%).

¹H NMR (300 MHz, CDCl₃) δ 2.80 (dd, J = 5.1 and 2.4 Hz, 1H), 3.09 (dd, J = 5.1 and 4.2 Hz, 1H), 3.80 (s, 3H), 3.82 (dd, J = 4.2 and 2.7 Hz, 1H), 6.84-6.91 (m, 2H), 7.18-7.23 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 49.3, 52.6, 126.5, 127.0, 128.1, 128.2, 134.6, 136.1.

(Z)-3-Bromo-1-chloro-4-phenylbut-3-en-2-ol[86] (SI-7)
A round bottom flask was charged with α-bromocinnamaldehyde (SI-6) (2.11 g, 10.0 mmol) and THF (20 mL). The resulting solution was cooled to -78 °C and chloroiodomethane (2.05 g, 11.6 mmol) was added followed by the slow addition of nBuLi (1.65 M in hexane, 7.0 mL, 11.6 mmol) over 30 minutes. After 1 h, the reaction was quenched with saturated aq. NH₄Cl and warmed to room temperature. The organic layer was removed and the aqueous solution was extracted three times with Et₂O. The combined organic layers were dried over MgSO₄ and the solvent was removed in vacuo. The crude product was purified by silica gel column chromatography to give SI-7 (1.82 g, 69%).

1H NMR (300 MHz, CDCl₃) δ 2.91 (brs, 1H), 3.78 (dd, J = 11.4 and 6.6 Hz, 1H), 3.86 (dd, J = 11.4 and 4.8 Hz, 1H), 4.55 (dd, J = 11.4 and 5.7 Hz, 1H), 7.23 (s, 1H), 7.32-7.41 (m, 3H), 7.64 (d, J = 7.2 Hz, 2H).

13C NMR (75 MHz, CDCl₃) δ 47.5, 77.0, 124.1, 128.3, 128.6, 129.2, 130.5, 134.6.

(Z)-2-(1-Bromo-2-phenylvinyl)oxirane[86] (3e)

To a solution of NaH (60% in mineral oil, 0.30 g, 7.6 mmol) and NaI (0.10 g, 0.70 mmol) in THF (7.0 mL), SI-7 (1.8 g, 6.9 mmol) in THF (7.0 mL) was added at 0 °C. After 1 h, the reaction was quenched with saturated aq. NH₄Cl, the organic layer was removed and the aqueous solution was extracted three times with Et₂O. The combined organic layers were dried over MgSO₄ and the solvent was removed in vacuo. The crude product was purified by silica gel column chromatography (5% NEt₃ in Hexane/AcOEt = 20/1) to give 3e (1.36 g, 87%).

1H NMR (300 MHz, CDCl₃) δ 2.96-3.02 (m, 2H), 3.65-3.67 (m, 2H), 7.19 (s, 1H), 7.31-7.42 (m, 3H), 7.66 (d, J = 4.5 Hz, 2H).

13C NMR (75 MHz, CDCl₃) δ 48.8, 55.4, 121.7, 128.3, 128.5, 129.1, 129.6, 134.7.

(Z)-4-(Benzyloxy)but-2-en-1-ol[87] (SI-9)

NaH (60% in mineral oil, 1.26 g, 31.5 mmol) was added very carefully to a solution of cis-2-butene-1,4-diol (SI-8) (7.29 mL, 89.4 mmol) in THF (32 mL) at 0 °C. The resulting mixture was stirred at room temperature for 1.5 h and then benzyl bromide (3.56 mL, 30.0 mmol) was added. The reaction mixture was refluxed for 1 h and then cooled to ambient temperature. The reaction was acidified with 1 N HCl carefully and the resulting two phases were separated. The aqueous phase was extracted three times with CH₂Cl₂ and the combined organic phases were dried over MgSO₄. After removal of solvent under reduced pressure the residue was purified by silica gel column chromatography (Hexane/AcOEt = 10/1 ~ 5/1) to give SI-9 (5.27 g, 98%).
\(^{1}\)H NMR (300 MHz, CDCl\(_3\)) \(?\ \delta\ 3.82\) (brs, 1H), 4.08 (d, \(J = 5.7\) Hz, 2H), 4.11 (d, \(J = 6.3\) Hz, 2H), 4.51 (s, 2H), 5.67-5.83 (m, 2H), 7.27-7.40 (m, 5H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(?\ \delta\ 58.2, 65.7, 72.4, 127.6, 127.8, 127.9, 128.5, 132.6, 138.0.

\((E)-4\)-(Benzyloxy)but-2-enal\(^{[8]}\) (SI-10)

```
\[
\begin{align*}
\text{BnO} & \text{OH} & \xrightarrow{(\text{COCl})_2}\text{DMSO\text{'}Pr}_2\text{NEt} & \xrightarrow{\text{CH}_2\text{Cl}_2} & \text{BnO}\xrightarrow{\text{H}}
\end{align*}
\]
```

To a solution oxalyl chloride (3.8 mL, 44 mmol) in CH\(_2\text{Cl}_2\), DMSO (6.3 mL, 89 mmol) was added dropwise at -78 °C. The mixture was stirred for 20 min and then was added a solution of SI-9 (5.3 g, 30 mmol, in 5.0 mL of CH\(_2\text{Cl}_2\)) dropwise and then stirred for 1 h. After that, diisopropylethylamine (31 mL, 177 mmol) was added slowly and stirred for 20 min and then allowed to warm up to room temperature by itself. The reaction mixture was washed with ice-cold 1 N HCl and then dried over Na\(_2\)SO\(_4\). The solution of crude product was directly used in the next step.

To the solution obtained in the proceeding step was added catalytic amount of conc. HCl. The solution was stirred at room temperature for 30 min and quenched with saturated aq. NaHCO\(_3\). The organic layer was washed again with water until pH 7, and then dried over Na\(_2\)SO\(_4\). The solution then filtered and concentrated in vacuo. Silica gel column chromatography afforded SI-10 (3.30 g, 73%).

\(^{1}\)H NMR (300 MHz, CDCl\(_3\)) \(?\ \delta\ 4.25\) (dd, \(J = 3.9\) and 1.8 Hz, 2H), 4.56 (s, 2H), 6.39 (ddt, \(J = 15.6, 8.1\) and 1.8 Hz, 1H), 6.81 (dt, \(J = 15.6\) and 3.9 Hz, 1H), 7.26-7.39 (m, 5H), 9.55 (d, \(J = 8.1\) Hz, 1H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(?\ \delta\ 68.6, 72.9, 127.7, 127.9, 128.5, 131.6, 137.6, 153.3, 193.3.

\((E)-5\)-(Benzyloxy)-1-chloropent-3-en-2-ol (SI-11)

```
\[
\begin{align*}
\text{BnO} & \xrightarrow{\text{CH}_2\text{Cl}_2\text{BuLi}}\text{H} & \xrightarrow{\text{THF}} & \text{BnO}
\end{align*}
\]
```

SI-11 was prepared from SI-10 (1.76 g, 10.0 mmol) in a similar to a manner as SI-7 (1.87 g, 82%).

\(^{1}\)H NMR (300 MHz, CDCl\(_3\)) \(?\ \delta\ 2.74\) (brs, 1H), 3.49 (dd, \(J = 11.1\) and 7.2 Hz, 1H), 3.60 (dd, \(J = 11.1\) and 4.2 Hz, 1H), 4.05 (d, \(J = 5.4\) Hz, 2H), 4.35 (dd, \(J = 9.9\) and 5.7 Hz, 1H), 4.53 (s, 2H), 5.77 (dd, \(J = 15.6\) and 5.7 Hz, 1H), 5.90-5.99 (m, 1H), 7.28-7.39 (m, 5H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(?\ \delta\ 49.4, 69.7, 71.6, 72.4, 127.7, 127.9, 128.5, 131.6, 137.6, 153.3, 193.3.

\((E)-2\)-(3-(Benzyloxy)prop-1-en-1-yl)oxirane (3f)

```
\[
\begin{align*}
\text{BnO} & \xrightarrow{\text{NaH\text{Nal}}\text{THF}}\text{O} & \xrightarrow{\text{SI-11}} & \text{BnO}
\end{align*}
\]
```

3f was prepared from SI-11 (1.87 g, 8.25 mmol) in a similar to a manner as 3e (1.46 g, 93%).
To a stirred solution of indene (SI-12) (1.16 mL, 10.0 mmol) in CH$_2$Cl$_2$-saturated aq. NaHCO$_3$ (200 mL, 1:1) was added m-CPBA (2.47 g, 10.0 mmol) in small portions over a 10-min period at 0 °C. After stirring for 5 h at room temperature, m-CPBA (2.47 g, 10.0 mmol) was added in small portions to the mixture at 0 °C over second 10-min period. The mixture was stirred at ambient temperature for 5 h and the organic layer was separated, washed with saturated aq. Na$_2$S$_2$O$_3$ and water, and dried over Na$_2$SO$_4$. The crude product was purified by Kugelrohr distillation to give 3g (0.50 g, 38%).

1H NMR (300 MHz, CDCl$_3$) δ 2.64-2.67 (m, 1H), 2.94-2.97 (m, 1H), 3.35-3.40 (m, 1H), 4.05 (dd, $J = 5.4$ and 1.2 Hz, 2H), 4.53 (s, 2H), 5.44-5.52 (m, 1H), 6.08 (dt, $J = 15.6$ and 5.4 Hz, 1H), 7.27-7.36 (m, 5H).

13C NMR (75 MHz, CDCl$_3$) δ 48.8, 51.8, 69.7, 72.3, 127.6, 127.7, 128.4, 130.4, 132.1, 138.1.

IR (neat) 699, 733, 842, 964, 1106, 1249, 1358, 1453, 2852, 3029 cm$^{-1}$

3,4-Dihydro-2H-spiro[naphthalene-1,2'-oxirane][S10] (3h)

Trimethylsulphoxonium iodide (4.4 g, 20 mmol) was added rapidly to a well stirred suspension of NaH (60% in mineral oil, 0.80 g, 20 mmol) in DMSO (10 mL) at 0 °C. After the addition, stirring continued for a further 15 min and α-tetralone (SI-13) (1.3 mL, 10 mmol) was then introduced. The reaction mixture was allowed to warm to room temperature and it was then heated to refluxed for 1 h and finally set aside to cool overnight. The next day water was added and the product extracted three times with Et$_2$O. The combined organic layers were dried over Na$_2$SO$_4$ and the solvent was removed in vacuo. The crude product was purified by silica gel column chromatography (5% NEt$_3$ in Hexane/AcOEt = 20/1) to give 3h (1.00 g, 63%).

1H NMR (300 MHz, CDCl$_3$) δ 1.84-1.91 (m, 1H), 1.97-2.23 (m, 3H), 2.91-2.97 (m, 2H), 3.03 (d, $J = 12.3$ Hz, 1H), 3.05 (d, $J = 12.3$ Hz, 1H), 7.13-7.28 (m, 4H).

13C NMR (75 MHz, CDCl$_3$) δ 22.1, 29.7, 32.0, 56.6, 59.0, 123.5, 126.4, 127.6, 135.7, 139.5.

HRMS (APCI-TOF) Calcd for C$_{11}$H$_{11}$O [M-H]$: 159.0810, Found: 159.0805.

IR (neat) 753, 916, 1038, 1453, 1487, 1603, 1725, 2866, 3035 cm$^{-1}$

Chloroacetyl chloride (SI-14) (2.86 g, 36.0 mmol) was dissolved in CH₂Cl₂ (20 mL) and this solution was added to a solution of the hydrochloride salt of N,O-dimethylhydroxylamine (2.93 g, 30.0 mmol) in water (20 mL). To the resulting biphasic solution was slowly added K₂CO₃ (4.97 g, 30.0 mmol) and the reaction mixture was allowed to stir for 12 h. The solution was then extracted three times with CH₂Cl₂, and the combined organic extracts were dried over Na₂SO₄ and concentrated to furnish SI-15 (4.13 g, >99%). The product was used without further purification.

¹H NMR (300 MHz, CDCl₃) δ 3.12 (s, 3H), 3.65 (s, 3H), 4.15 (s, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 32.5, 40.9, 61.6, 167.3.

1-Chloro-4-phenylbut-3-yn-2-one [SI-12] (SI-17)

To a stirred solution of phenyl acetylene (SI-16) (1.94 mL, 15 mmol) in THF (30 mL) cooled at 0 °C was added dropwise nBuLi (1.65 M in hexane, 9.1 mL, 15 mmol) and stirred for 30 min. To the so generated lithium acetylide, the solution of Weinreb amide SI-15 (1.38 g, 10 mmol) in THF (20 mL) was added dropwise at the same temperature and the reaction mixture stirred for another 30 min. The reaction mixture was quenched with NHCl. The solution was then extracted three times with Et₂O and the combined organic extracts were dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude material was purified by silica gel column chromatography (Hexane/AcOEt = 20/1 ~ 10/1) to furnish SI-17 (1.53 g, 85%).

¹H NMR (300 MHz, CDCl₃) δ 4.31(s, 3H), 7.37-7.42 (m, 2H), 7.46-7.52 (m, 1H), 7.58-7.62 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 49.6, 85.6, 95.4, 119.2, 128.8, 131.5, 133.4, 178.9.

1-Chloro-4-phenylbut-3-yn-2-ol (SI-18)

To a stirred solution of SI-17 (1.53 g, 8.5 mmol) in MeOH (50 mL), NaBH₄ (0.48 g, 12.8 mmol) was added at 0 °C. The resulting solution was stirred at room temperature for 2 h. The reaction was quenched with water and the solution was extracted three times with Et₂O. The combined organic extracts were washed with water and brine and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (hexane/AcOEt = 10/1 ~ 5/1) to furnish SI-18 (1.49 g, 97%).

¹H NMR (300 MHz, CDCl₃) δ 3.00 (brs, 1H), 3.71-3.83 (m, 2H), 4.83 (dd, J = 6.3 and 4.5 Hz, 1H), 7.31-
7.35 (m, 3H), 7.44-7.47 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 49.0, 63.1, 86.1, 86.3, 121.8, 128.4, 128.9, 131.9.

2-(Phenylethynyl)oxirane (3i)

![Diagram](image)

3i was prepared from SI-18 (0.84 g, 4.7 mmol) in a similar to a manner as 3e (0.51 g, 76%).

1H NMR (300 MHz, CDCl$_3$) δ 2.99 (d, $J = 3.3$ Hz, 2H), 3.57 (t, $J = 3.3$ Hz, 1H), 7.28-7.34 (m, 3H), 7.44-7.47 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 40.2, 49.1, 83.4, 85.9, 122.0, 128.4, 128.8, 131.9.

IR (neat) 755, 830, 926, 1227, 1370, 1486, 1964, 2230, 2996, 3058 cm$^{-1}$

1-Chloro-4-(4-methoxyphenyl)but-3-yn-2-one (SI-20)

![Diagram](image)

SI-20 was prepared from p-methoxyphenyl acetylene (SI-19) (0.66 g, 5.0 mmol) in a similar to a manner as SI-17 (0.53 g, 51%).

1H NMR (300 MHz, CDCl$_3$) δ 3.76 (s, 3H), 4.25 (s, 2H), 6.83 (d, $J = 8.7$ Hz, 2H), 7.47 (d, $J = 8.7$ Hz, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 49.6, 55.5, 85.6, 96.7, 110.7, 114.5, 135.5, 162.2, 178.6.

1-Chloro-4-(4-methoxyphenyl)but-3-yn-2-ol (SI-21)

![Diagram](image)

SI-21 was prepared from SI-20 (0.53 g, 2.6 mmol) in a similar to a manner as SI-18 (0.54 g, >99%).

1H NMR (300 MHz, CDCl$_3$) δ 2.67 (brs, 1H), 3.69-3.83 (m, 2H), 3.81 (s, 3H), 4.77-4.84 (m, 1H), 6.81-6.85 (m, 2H), 7.36-7.40 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 49.2, 55.3, 63.1, 84.7, 86.4, 113.9, 114.0, 133.4, 160.0.

2-((4-Methoxyphenyl)ethynyl)oxirane (3j)
3j was prepared from SI-21 (0.54 g, 2.6 mmol) in a similar to a manner as 3e (0.37 g, 83%).

1H NMR (300 MHz, C_6D_6) δ 2.35 (ddd, J = 6.3, 3.9 and 0.6 Hz, 1H), 2.63 (dd, J = 6.3 and 2.4 Hz, 1H), 3.17 (s, 3H), 3.21 (dd, J = 3.9 and 2.4 Hz, 1H), 6.52-6.56 (m, 2H), 7.30-7.35 (m, 2H).

13C NMR (75 MHz, C_6D_6) δ 40.2, 48.5, 54.8, 83.7, 85.7, 114.4, 114.7, 133.7, 160.4.

HRMS (APCI-TOF) Calcd for $C_{11}H_{11}O_2$ [M+H]$^+$: 175.0759, Found: 175.0761.

IR (neat) 837, 1247, 1507, 1609, 2046, 2230, 2545, 2839, 2996 cm$^{-1}$

(But-3-yn-1-yloxy)(tert-butyl)diphenylsilane (SI-23)

To a stirred solution of 3-butyn-1-ol (SI-22) (0.23 mL, 3.0 mmol) in CH$_2$Cl$_2$ (12 mL), triethylamine (0.83 mL), DMAP (0.11 g, 0.9 mmol) and TBDPSCl (0.92 mL, 3.6 mmol) was added at 0 °C and stirred for 12 h. The reaction mixture was quenched with saturated aq. NaHCO$_3$ and the solution was extracted three times with CH$_2$Cl$_2$. The combined organic extracts were dried over Na$_2$SO$_4$. After removal of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (Hexane/AcOEt = 20/1) to furnish SI-23 (0.93 g, 99%).

1H NMR (300 MHz, CDCl$_3$) δ 1.10 (s, 9H), 1.97 (t, J = 2.7 Hz, 1H), 2.49 (td, J = 7.2 and 2.7 Hz, 2H), 3.83 (t, J = 7.2 Hz, 2H), 7.39-7.49 (m, 6H), 7.71-7.75 (m, 4H).

13C NMR (75 MHz, CDCl$_3$) δ 19.3, 22.8, 26.8, 27.1, 54.3, 62.2, 67.5, 82.0, 82.5, 127.7, 129.8, 133.6, 135.6.

6-((tert-Butyldiphenylsilyl)oxy)-1-chloro-2-methylhex-3-yn-2-ol (SI-25)

SI-25 was prepared from SI-23 (0.98 g, 3.2 mmol) and chloroacetone (SI-24) (0.28 mL, 3.5 mmol) in a similar to a manner as SI-17 (0.71 g, 56%).

1H NMR (300 MHz, CDCl$_3$) δ 1.08 (s, 9H), 1.55 (s, 3H), 2.51 (t, J = 6.9 Hz, 2H), 2.51 (brs, 1H), 3.55 (d, J = 10.8 Hz, 1H), 3.64 (d, J = 10.8 Hz, 1H), 3.79 (t, J = 6.9 Hz, 2H), 7.38-7.48 (m, 6H), 7.71-7.75 (m, 4H).

13C NMR (75 MHz, CDCl$_3$) δ 19.3, 22.8, 26.8, 27.1, 54.3, 62.2, 67.5, 82.0, 82.5, 127.7, 129.8, 133.6, 135.6.

$tert$-Butyl((4-(2-methyloxiran-2-yl)but-3-yn-1-yl)oxy)diphenylsilane (3k)
3k was prepared from **SI-25** (0.71 g, 1.8 mmol) in a similar to a manner as **3e** (0.65 g, >99%).

\[
\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 1.07 (s, 9H), 1.52 (s, 3H), 2.47 (t, J = 6.9 Hz, 2H), 2.71 (d, J = 5.7 Hz, 1H), 2.95 (d, J = 5.7 Hz, 1H), 3.76 (t, J = 6.9 Hz, 2H), 7.37-7.47 (m, 6H), 7.69 (dd, J = 7.5 and 1.8 Hz, 4H).
\]

\[
\text{13C NMR (75 MHz, CDCl}_3\text{)} \delta 19.2, 22.8, 23.2, 26.8, 47.4, 55.5, 62.2, 80.0, 80.6, 127.7, 129.7, 133.5, 135.6.
\]

HRMS (APCI-TOF) Calcd for C\(_{23}\)H\(_{28}\)NaO\(_2\)Si [M+Na]\(^+\): 387.1756, Found: 387.1766.

IR (neat) 701, 912, 1111, 1432, 1896, 1958, 2245, 2852, 2948, 3051 cm\(^{-1}\)

tert-Butyl((3-methylbut-3-en-1-yl)oxy)diphenylsilane (SI-27)

SI-27 was prepared from 3-methyl-3-buten-1-ol (**SI-26**) (0.38 mL, 3.9 mmol) in a similar to a manner as **SI-23** (1.40 g, >99%).

\[
\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 1.21 (s, 9H), 1.81 (s, 3H), 2.42 (t, J = 6.9 Hz, 2H), 3.91 (t, J = 6.9 Hz, 2H), 4.83 (s, 1H), 4.89 (s, 1H), 7.47-7.56 (m, 6H), 7.83 (dd, J = 7.5 and 2.1 Hz, 4H).
\]

\[
\text{13C NMR (75 MHz, CDCl}_3\text{)} \delta 19.3, 22.9, 27.0, 41.0, 62.9, 111.9, 127.8, 129.7, 134.1, 135.7, 143.0.
\]

tert-Butyl((2-(2-methyloxiran-2-yl)ethoxy)diphenylsilane (3l)

To a heterogeneous solution of NaHCO\(_3\) (0.98 g, 11.7 mmol) and **SI-27** (1.27 g, 3.9 mmol) in CH\(_2\)Cl\(_2\) (13 mL), m-CPBA (0.40 g, 4.7 mmol) was added at 0 °C. After stirring at room temperature for 12 h, the reaction was quenched with saturated aq. Na\(_2\)S\(_2\)O\(_3\) at 0 °C. The organic layer was separated, washed with water and dried over Na\(_2\)SO\(_4\). After removal of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (Hexane/AcOEt = 20/1) to furnish **3l** (0.40 g, 30%).

\[
\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 1.10 (s, 9H), 1.35 (s, 3H), 1.70-1.79 (m, 1H), 1.91-2.00 (m, 1H), 3.82 (t, J = 6.3 Hz, 2H), 7.39-7.49 (m, 6H), 7.70-7.73 (m, 4H).
\]

\[
\text{13C NMR (75 MHz, CDCl}_3\text{)} \delta 19.2, 21.5, 26.9, 39.7, 54.2, 55.5, 60.7, 127.7, 1289.7, 133.7, 135.6.
\]

IR (KBr) 702, 936, 1101, 1383, 1581, 1829, 2852, 2935, 3072 cm\(^{-1}\)

Methyl 4-(2,2,3,3,4,4,5,5,5-nonafluoro-1-hydroxypentyl)-benzoate (2m)
Methyl 2-hydroxy-1-methyl-2-(perfluorohexyl)cyclopentanecarboxylate (2n)

1H NMR (300 MHz, CDCl₃) δ 3.09 (brs, 1H), 3.92 (s, 3H), 5.28 (dd, J_HF = 17.1 and 6.0 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 8.05 (d, J = 8.1 Hz, 2H).

13C NMR (75 MHz, CDCl₃) δ 52.5, 72.0 (dd, J_CF = 28.5 and 22.5 Hz), 104.6-130.6 (m, (CF₂)₃CF₃), 128.2, 129.9, 131.3, 138.9, 166.9.

19F NMR (282 MHz, CDCl₃) δ -80.9 (t, J_FF = 8.3 Hz, 3F), -117.3-(-127.5) (m, 6F).

IR (KBr) 537, 723, 888, 1211, 1307, 1444, 1706, 1953, 2970, 3458 cm⁻¹

Synthesis of non-commercially available ketones

3-O-Methylestrone (1a)[S2]

Methyl 1-methyl-2-oxocyclopentanecarboxylate (1n)[S3]

Procedure for Scheme 4 (Perfluoroalkyl Grignard reagent)
To a solution of \(^{1}\text{BuMgCl} (2.0 \text{ M in Et}_2\text{O}, 0.12 \text{ mL}, 0.24 \text{ mmol})\) in \text{Et}_2\text{O} (2.4 \text{ mL}) was added perfluorohexyl iodide (78 \mu L, 0.36 mmol) at -78 \degree C. After stirring at -78 \degree C for 1 h, \text{Cp}_2\text{ZrCl}_2 (70.2 mg, 0.24 mmol) and 1,4-dioxane (0.23 \mu L, 0.27 mmol) was added and the reaction mixture was stirred at -20 \degree C for 2 h before benzaldehyde (1b) (20 \mu L, 0.20 mmol) was added. After stirring at room temperature for 1 h, the reaction was quenched by \(1 \text{ N HCl}\) and extracted three times with \text{Et}_2\text{O}. Combined organic layer was dried over \(\text{Na}_2\text{SO}_4\) and the solvent was removed \textit{in vacuo}. The yield of \(2,2,3,3,4,4,5,5,6,6,7,7,7\)-tridecafluoro-1-phenylheptan-1-ol (2b) (56\%) was determined by \(^1\text{H NMR}\) using \(1,1,2,2\)-tetrachloroethane as an internal standard.

Procedure for Scheme 4 (Perfluoroalkyl lithium reagent)

To a solution of \(\text{MeLi} (1.6 \text{ M in Et}_2\text{O}, 0.15 \text{ mL}, 0.24 \text{ mmol})\) in \text{Et}_2\text{O} (2.4 mL) was added perfluorohexyl iodide (78 \mu L, 0.36 mmol) at -78 \degree C. After stirring at -78 \degree C for 15 min, \text{Cp}_2\text{ZrCl}_2 (70.2 mg, 0.24 mmol) was added and the reaction mixture was stirred at -20 \degree C for 2 h before benzaldehyde (1b) (20 \mu L, 0.20 mmol) was added. After stirring at room temperature for 1 h, the reaction was quenched by \(1 \text{ N HCl}\) and extracted three times with \text{Et}_2\text{O}. Combined organic layer was dried over \(\text{Na}_2\text{SO}_4\) and the solvent was removed \textit{in vacuo}. The crude mixture was analyzed by \(^1\text{H NMR}\).

Procedure for Scheme 6

To a solution of \text{Cp}_2\text{ZrCl}_2 (70.2 mg, 0.24 mmol) in \text{Et}_2\text{O} (2.4 mL) was added \(^{1}\text{BuMgCl} (2.0 \text{ M in Et}_2\text{O}, 0.12 \text{ mL}, 0.24 \text{ mmol})\), 1,4-dioxane (23 \mu L, 0.27 mmol) and perfluorohexyl iodide (78 \mu L, 0.36 mmol) in this order at -78 \degree C. After stirring at -78 \degree C for 1 h, styrene oxide (3a) (23 \mu L, 0.20 mmol) was added. The reaction mixture was stirred at room temperature for 1 h, quenched by \(1 \text{ N HCl}\) and extracted three times with \text{Et}_2\text{O}. Combined organic layer was dried over \(\text{Na}_2\text{SO}_4\) and removed solvent \textit{in vacuo}. The crude product was purified by silica gel column chromatography (Hexane/AcOEt = 20/1) to give 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-phenyloctan-2-ol (4a) (37.9 mg, 43\%) and 2-chloro-2-phenylethanol\(^{54}\) (6) (3.1 mg, 10\%).

General procedure for the perfluoroalkylation of epoxides

To a solution of \text{Cp}_2\text{ZrCl}_2 (70.2 mg, 0.24 mmol) in \text{Et}_2\text{O} (2.4 mL) was added \(^{1}\text{BuMgCl} (2.0 \text{ M in Et}_2\text{O}, 0.12 \text{ mL}, 0.24 \text{ mmol})\) and perfluorohexyl iodide (78 \mu L, 0.36 mmol). After stirring at -78 \degree C for 1 h, 1,4-dioxane (23 \mu L, 0.27 mmol) and methylaluminoxane (10 wt\% in toluene, 0.16 mL, 0.24 mmol) were added. After the mixture was stirred at 0 \degree C for 2 min, styrene oxide (3a) (23 \mu L, 0.20 mmol) was added. The reaction mixture was stirred at room temperature for 1 h, quenched by \(1 \text{ N HCl}\) and extracted three times with \text{Et}_2\text{O}. Combined organic layer was dried over \(\text{Na}_2\text{SO}_4\) and condensed \textit{in vacuo}. The crude product was purified by silica gel column chromatography (Hexane/AcOEt = 20/1) to give 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-phenyloctan-2-ol (4a) (77.5 mg, 88\%).

\[3,3,4,4,5,5,6,6,7,7,8,8,8-\text{Tridecafluoro-1-phenyloctan-2-ol (4a)}\]

\[\text{H NMR} (300 \text{ MHz, CDCl}_3) \delta 2.28 (d, J = 6.3 \text{ Hz, 1H}), 2.87 (dd, J = 14.1 \text{ and } 10.5 \text{ Hz, 1H}), 3.15 (d, J = 14.1 \text{ Hz, 1H}), 4.26-4.38 (m, 1H), 7.27-7.42 (m, 5H).\]
13C NMR (75 MHz, CDCl$_3$) δ 35.5, 71.1 (dd, $J_{CF} = 28.5$ and 21.8 Hz), 104.2-123.4 (m, (CF$_2$)$_5$CF$_3$), 127.2, 128.8, 129.5, 135.7.

19F NMR (282 MHz, CDCl$_3$) δ -81.1 (t, $J_{FF} = 9.9$ Hz, 3F), -119.9-(-127.6) (m, 10F).

HRMS (APCI-TOF) Calcd for C$_{14}$H$_8$F$_{13}$O [M-H]: 439.0368, Found: 439.0353.

IR (neat) 651, 706, 1147, 1201, 1249, 1358, 1460, 1500, 3035, 3531 cm$^{-1}$

3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluoro-1-(4-methoxy-phenyl)octan-2-ol (4b)

1H NMR (300 MHz, CDCl$_3$) δ 2.09 (d, $J = 6.3$ Hz, 1H), 2.82 (dd, $J = 14.1$ and 10.2 Hz, 1H), 3.07 (d, $J = 14.1$ Hz, 1H), 3.80 (s, 3H), 4.28-4.31 (m, 1H), 6.88 (d, $J = 8.4$ Hz, 2H), 7.18 (d, $J = 8.4$ Hz, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 34.6, 55.3, 71.1 (dd, $J_{CF} = 28.5$ and 23.3 Hz), 100.2-123.4 (m, (CF$_2$)$_5$CF$_3$), 114.3, 127.3, 130.6, 158.9.

19F NMR (282 MHz, CDCl$_3$) δ -80.9 (t, $J_{FF} = 9.6$ Hz, 3F), -119.8-(-127.3) (m, 10F).

HRMS (APCI-TOF) Calcd for C$_{15}$H$_{10}$F$_{13}$O$_2$ [M-H]: 469.0473, Found: 469.0488.

IR (neat) 748, 885, 967, 1124, 1131, 1240, 1357, 2921, 3030, 3454 cm$^{-1}$

(E)-5,5,6,6,7,7,8,8,8-Nonafluoro-1-phenyl-oct-1-en-4-ol (4c)

1H NMR (300 MHz, CDCl$_3$) δ 2.24 (d, $J = 7.2$ Hz, 1H), 2.58-2.68 (m, 1H), 2.72-2.79 (m, 1H), 4.21-4.35 (m, 1H), 6.18-6.28 (m, 1H), 6.61(d, $J = 15.6$ Hz, 1H), 7.26-7.42 (m, 5H).

13C NMR (75 MHz, CDCl$_3$) δ 33.2, 93.2 (dd, $J_{CF} = 27.8$ and 22.5 Hz), 107.1-119.8 (m, (CF$_2$)$_3$CF$_3$), 122.7, 126.3, 127.9, 128.7, 135.3, 136.5.

19F NMR (282 MHz, CDCl$_3$) δ -80.9 (t, $J_{FF} = 9.0$ Hz, 3F), -120.1-(-127.6) (m, 6F).

IR (KBr) 748, 885, 967, 1124, 1131, 1240, 1357, 2921, 3030, 3454 cm$^{-1}$

(Z)-2-Bromo-5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluoro-1-phenyldec-1-en-4-ol (4d)

1H NMR (300 MHz, CDCl$_3$) δ 2.37 (d, $J = 6.3$ Hz, 1H), 2.92-3.07 (m, 2H), 4.57-4.71 (m, 1H), 6.95 (s, 1H), 7.30-7.41 (m, 3H), 7.60 (d, $J = 6.9$ Hz, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 43.5, 68.2 (dd, $J_{CF} = 28.9$ and 23.3 Hz), 107.0-123.2 (m, (CF$_2$)$_5$CF$_3$), 119.5, 128.4, 128.5, 129.1, 132.9, 135.2.

19F NMR (282 MHz, CDCl$_3$) δ -80.8 (t, $J_{FF} = 9.6$ Hz, 3F), -119.7-(-127.3) (m, 10F).

HRMS (APCI-TOF) Calcd for C$_{16}$H$_9$BrF$_{13}$O [M-H]: 542.9629, Found: 545.9630.

IR (neat) 692, 753, 916, 1147, 1242, 1317, 1371, 1446, 3056, 3410 cm$^{-1}$
(E)-8-(Benzyloxy)-1,1,1,2,2,3,3-heptafluorooct-6-en-4-ol (4e)

\[
\begin{align*}
\text{BnO} & \quad \text{(CF}_2\text{)}_2\text{CF}_3 \\
\text{OH} & \\
\end{align*}
\]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 2.35-2.45 (m, 1H), 2.50-2.57 (m, 1H), 2.78 (d, \(J = 6.6\) Hz, 1H), 4.53 (s, 3H), 5.68-5.86 (m, 2H), 7.28-7.39 (m, 5H).

\(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 32.4, 68.9 (dd, \(J_{\text{CF}} = 28.5\) and 23.3 Hz), 72.5, 106.1-123.5 (m, (CF\(_2\))\(_2\)CF\(_3\)), 127.1, 127.8, 127.8, 128.5, 131.7, 137.9.

\(^19\)F NMR (282 MHz, CDCl\(_3\)) \(\delta\) -80.9 (t, \(J_{\text{FF}} = 10.2\) Hz, 3F), -121.0 (dd, \(J_{\text{FF}} = 282.4\) Hz and \(J_{\text{FH}} = 5.5\) Hz, 1F), -124.7 (-128.3) (m, 3F).

HRMS (APCI-TOF) Calcd for C\(_{15}\)H\(_{14}\)F\(_7\)O \([\text{M-H}]^\bullet\): 359.0882, Found: 359.0871.

IR (neat) 733, 916, 978, 1114, 1228, 1351, 1460, 2859, 2933, 3395 cm\(^{-1}\)

2-(Perfluorooctyl)-2,3-dihydro-1H-inden-2-ol (4f)

\[
\begin{align*}
\text{OH} & \quad \text{(CF}_2\text{)}_7\text{CF}_3 \\
\end{align*}
\]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 2.23 (s, 1H), 3.10 (d, \(J = 16.8\) Hz, 1H), 3.58 (d, \(J = 16.8\) Hz, 1H), 7.24-7.31 (m, 4H).

\(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 42.8, 84.0 (t, \(J_{\text{CF}} = 25.5\) Hz), 104.8-120.7 (m, (CF\(_2\))\(_7\)CF\(_3\)), 125.2, 127.5, 138.4.

\(^19\)F NMR (282 MHz, CDCl\(_3\)) \(\delta\) -80.9 (t, \(J_{\text{FF}} = 9.6\) Hz, 3F), -118.4 (s, 2F), -119.4 (s, 2F), -121.8 (-121.8) (brm, 6F), -122.8 (s, 2F), -126.2 (s, 2F).

HRMS (APCI-TOF) Calcd for C\(_{17}\)H\(_{8}\)F\(_{17}\)O [M-H]: 551.0304, Found: 551.0300.

IR (KBr) 659, 753, 1072, 1208, 1480, 1725, 1935, 3035, 3579 cm\(^{-1}\)

2,2,3,3,3-Pentafluoro-1-(1,2,3,4-tetrahydronaphthalen-1-yl)propan-1-ol (4g)

Physical data of mixture of the two isomers (52:48)

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 1.59-1.71 (m, 1H), 1.87-2.09 (m, 4H), 2.68-2.92 (m, 2H), 3.38-3.43 (brm, 1H), 4.02-4.15 (m, 1H, major), 4.57-4.69 (m, 1H, minor), 7.12-7.24 (m, 4H).

\(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 18.4, 21.8, 22.6 (d, \(J_{\text{CF}} = 3.8\) Hz), 28.1 (d, \(J_{\text{CF}} = 3.0\) Hz), 28.5, 29.9, 37.5, 38.2, 71.7 (dd, \(J_{\text{CF}} = 28.5\) and 22.5 Hz), 72.3 (dd, \(J_{\text{CF}} = 27.0\) and 19.5 Hz), 110.4-125.0 (m, CF\(_2\)CF\(_3\)), 126.0, 126.6, 126.7, 127.5, 127.9, 129.9, 130.2, 130.9 (d, \(J_{\text{CF}} = 3.8\) Hz), 132.3, 135.1, 139.1, 140.2.

\(^19\)F NMR (282 MHz, CDCl\(_3\)) \(\delta\) -81.8 (s, 3F, minor), -82.8 (s, 3F, major), -82.8 (s, 3F, minor), -121.0 (d, \(J_{\text{FF}} = 276.0\) Hz, 1F, major), -123.0 (d, \(J_{\text{FF}} = 276.1\) Hz, 1F, minor), -127.9 (dd, \(J_{\text{FF}} = 276.1\) Hz and \(J_{\text{FH}} = 22.3\) Hz, 1F, minor), -131.6 (dd, \(J_{\text{FF}} = 276.0\) Hz and \(J_{\text{FH}} = 22.4\) Hz, 1F, major).

IR (neat) 740, 1038, 1120, 1195, 1244, 1453, 1493, 2872, 2947, 3538 cm\(^{-1}\)
5,5,6,6,7,7,8,8,8-Nonafluoro-1-phenyloct-1-yn-4-ol (4h)

\[
\begin{align*}
&\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 2.69 (d, J = 6.9 \text{ Hz}, 1H), 2.86-3.02 (m, 2H), 4.38-4.44 (m, 1H), 7.29-7.45 (m, 5H).
\end{align*}
\]

\[
\begin{align*}
&\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 21.8 (t, J_{CF} = 0.4 \text{ Hz}), 68.3 (dd, J_{CF} = 29.3 \text{ and } 22.5 \text{ Hz}), 82.5, 84.4, 99.8-129.5 (m, (CF}_2)_3CF_3, 122.6, 128.5, 128.7, 131.9.
\end{align*}
\]

\[
\begin{align*}
&\text{F NMR (282 MHz, CDCl}_3\text{)} \delta -80.9 (t, J_{FF} = 8.3 \text{ Hz}, 3F), -119.6-(-128.5) (m, 6F).
\end{align*}
\]

\[
\begin{align*}
&\text{HRMS (APCI-TOF) Calcd for C}_{14}H_8F_9O^{-}[M-H]: 363.0431, \text{ Found: 363.0433.}
\end{align*}
\]

IR (neat) 755, 885, 1131, 1233, 1350, 1493, 1678, 2927, 3064, 3488 cm\(^{-1}\)

5,5,6,6,7,7,8,8,9,9,10,10,10-Tridecafluoro-1-(4-methoxyphenyl)dec-1-yn-4-ol (4i)

\[
\begin{align*}
&\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 2.70 (d, J = 7.2 \text{ Hz}, 1H), 2.84-3.00 (m, 2H), 3.91 (s, 3H), 4.34-4.46 (m, 1H), 6.84 (d, J = 8.7 \text{ Hz}, 2H), 7.36 (d, J = 8.7 \text{ Hz}, 2H).
\end{align*}
\]

\[
\begin{align*}
&\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 21.8, 55.4, 68.3 (dd, J_{CF} = 29.3 \text{ and } 22.5 \text{ Hz}), 81.0, 84.4, 106.4-129.0 (m, (CF}_2)_5CF_3, 114.1, 114.7, 133.3, 159.9.
\end{align*}
\]

\[
\begin{align*}
&\text{F NMR (282 MHz, CDCl}_3\text{)} \delta -80.8 (t, J_{FF} = 9.3 \text{ Hz}, 3F), -119.8-(-128.3) (m, 10F).
\end{align*}
\]

\[
\begin{align*}
&\text{HRMS (APCI-TOF) Calcd for C}_{17}H_{10}F_{13}O_2^{-}[M-H]: 493.0473, \text{ Found: 493.0459.}
\end{align*}
\]

IR (KBr) 695, 826, 1032, 1506, 1603, 1719, 2852, 2970, 3313 cm\(^{-1}\)

8-((\text{tert-Butyldiphenylsilyl)}oxy)-1,1,1,2,2-pentafluoro-4-methyloct-5-yn-3-ol (4j)

\[
\begin{align*}
&\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 1.07 (s, 9H), 1.28 (d, J = 7.2 \text{ Hz}, 3H), 2.38-2.46 (m, 3H), 2.98-3.01 (brm, 1H), 3.76 (t, J = 6.6 \text{ Hz}, 2H), 4.07-4.19 (m, 1H), 7.37-7.47 (m, 6H), 7.67-7.70 (m, 4H).
\end{align*}
\]

\[
\begin{align*}
&\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 15.0, 19.2, 22.8, 26.7, 28.0, 62.5, 70.5 (dd, J_{CF} = 27.0 \text{ and } 20.3 \text{ Hz}), 80.6, 80.7, 109.5-124.6 (m, CF}_2CF_3, 127.7, 129.7, 133.6, 135.6.
\end{align*}
\]

\[
\begin{align*}
&\text{F NMR (282 MHz, CDCl}_3\text{)} \delta -82.7 (s, 3F), -121.4 (d, J_{FF} = 276.9 \text{ Hz}, 1F), -130.0 (d, J_{FF} = 276.9 \text{ Hz } \text{ and } J_{FH} = 20.9 \text{ Hz}, 1F).
\end{align*}
\]

\[
\begin{align*}
&\text{HRMS (APCI-TOF) Calcd for C}_{25}H_{28}F_5O_2Si^{-}[M-H]: 483.1779, \text{ Found: 483.1764.}
\end{align*}
\]

IR (neat) 699, 733, 822, 1059, 1106, 1195, 1426, 2859, 2933, 3524 cm\(^{-1}\)

Minor

\[
\begin{align*}
&\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 1.06 (s, 9H), 1.33 (d, J = 6.9 \text{ Hz}, 3H), 2.44 (td, J = 6.6 \text{ and } 2.1 \text{ Hz}, 2H), 2.69 (d, J = 10.5 \text{ Hz}, 1H), 3.03-3.06 (m, 1H), 3.75 (t, J = 6.6 \text{ Hz}, 2H), 3.79-3.84 (m, 1H), 7.36-7.47 (m, 6H), 7.66-7.69 (m, 4H).
\end{align*}
\]

\[
\begin{align*}
&\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 19.2, 19.4, 22.8, 26.7, 27.3, 62.4, 70.8 (dd, J_{CF} = 28.5 \text{ and } 21.8 \text{ Hz}, 77.9,
\end{align*}
\]
83.5, 112.7-126.3 (m, CF₂CF₃), 127.7, 129.7, 133.5, 135.5.

¹⁹F NMR (282 MHz, CDCl₃) δ -82.3 (s, 3F), -122.0 (d, J_{FF} = 276.1 Hz, 1F), -132.6 (dd, J_{FF} = 276.1 Hz and J_{FH} = 19.9 Hz, 1F).

HRMS (APCI-TOF) Calcd for C₂₅H₂₈F₅O₂Si [M-H]: 483.1779, Found: 483.1761.

IR (neat) 699, 733, 1018, 1106, 1201, 1426, 1589, 2859, 2933, 3491 cm⁻¹

Synthesis of non-commercially available epoxides

^{p-}Methoxystyrene oxide (3b)^[S5]

\[
\begin{align*}
\text{MeO} & \quad \xrightarrow{\text{Me}_3S^+\text{I}^-} \quad \text{TBAB} \\
\text{Cl} & \quad \xrightarrow{\text{CH}_2\text{Cl}_2/\text{NaOH aq.}} \\
\text{MeO} & \quad \xrightarrow{\text{TBAB}} \\
\end{align*}
\]

2-Styryloxirane (3d)^[S7]

\[
\begin{align*}
\text{MeO} & \quad \xrightarrow{\text{Me}_3S^+\text{I}^-} \quad \text{TBAB} \\
\text{Cl} & \quad \xrightarrow{\text{CH}_2\text{Cl}_2/\text{NaOH aq.}} \\
\text{MeO} & \quad \xrightarrow{\text{TBAB}} \\
\end{align*}
\]

(Z)-3-Bromo-1-chloro-4-phenylbut-3-en-2-ol (SI-7)^[S7]

\[
\begin{align*}
\text{Br} & \quad \xrightarrow{\text{CH}_2\text{Cl}_2} \quad \text{BuLi} \\
\text{Br} & \quad \xrightarrow{\text{THF}} \\
\text{Br} & \quad \xrightarrow{\text{NaH, THF}} \\
\text{Br} & \quad \xrightarrow{\text{NaI, THF}} \\
\end{align*}
\]

(Z)-2-(1-Bromo-2-phenylvinyl)oxirane (3e)^[S7]

\[
\begin{align*}
\text{Br} & \quad \xrightarrow{\text{NaH, THF}} \\
\end{align*}
\]

(Z)-4-(Benzyloxy)but-2-en-1-ol (SI-9)^[S8]

\[
\begin{align*}
\text{Br} & \quad \xrightarrow{\text{BnBr, NaH, THF}} \\
\end{align*}
\]

(E)-4-(Benzyloxy)but-2-enal (SI-10)^[S9]
(E)-5-(Benzyloxy)-1-chloropent-3-en-2-ol (SI-11)

SI-11 was prepared from SI-10 (1.76 g, 10.0 mmol) in a similar to a manner as SI-7 (1.87 g, 82%).

\[
{\text{H NMR (300 MHz, CDCl}_3{\text{)}} \delta 2.74 \text{(brs, 1H), 3.49 (dd, } J = 11.1 \text{ and } 7.2 \text{ Hz, 1H), 3.60 (dd, } J = 11.1 \text{ and } 4.2 \text{ Hz, 1H), 4.05 (d, } J = 5.4 \text{ Hz, 2H), 4.35 (dd, } J = 9.9 \text{ and } 5.7 \text{ Hz, 1H), 4.53 (s, 2H), 5.77 (dd, } J = 15.6 \text{ and } 5.7 \text{ Hz, 1H), 5.90-5.99 (m, 1H), 7.28-7.39 (m, 5H).}}
\]

\[
{\text{13C NMR (75 MHz, CDCl}_3{\text{)}} \delta 49.4, 69.7, 71.6, 72.4, 127.7, 127.8, 128.5, 128.9, 130.8, 138.0.
\]

\[
{\text{HRMS (APCI-TOF) Calcd for C}_{12}\text{H}_{15}\text{O}_2[\text{M+H}]^+: 191.1072, Found: 191.1065.}}
\]

\[
{\text{IR (neat) 699, 733, 842, 964, 1249, 1358, 1453, 2852, 3029 cm}^{-1}}
\]

(E)-2-(3-(Benzyloxy)prop-1-en-1-yl)oxirane (3f)

3f was prepared from SI-11 (1.87 g, 8.25 mmol) in a similar to a manner as 3e (1.46 g, 93%).

\[
{\text{H NMR (300 MHz, CDCl}_3{\text{)}} \delta 2.64-2.67 \text{(m, 1H), 2.94-2.97 (m, 1H), 3.35-3.40 (m, 1H), 4.05 (dd, } J = 5.4 \text{ and 1.2 Hz, 2H), 4.53 (s, 2H), 5.44-5.52 (m, 1H), 6.08 (dt, } J = 15.6 \text{ and 5.4 Hz, 1H), 7.27-7.36 (m, 5H).}}
\]

\[
{\text{13C NMR (75 MHz, CDCl}_3{\text{)}} \delta 48.8, 51.8, 69.7, 72.3, 127.6, 127.7, 128.4, 130.4, 132.1, 138.1.}}
\]

\[
{\text{HRMS (APCI-TOF) Calcd for C}_{12}\text{H}_{15}\text{O}_2[\text{M+H}]^+: 191.1072, Found: 191.1065.}}
\]

6,6a-Dihydro-1aH-indeno[1,2-b]oxirene (3g)

3,4-Dihydro-2H-spiro[naphthalene-1,2’-oxirane] (3h)

2-Chloro-N-methoxy-N-methylacetamide (SI-15)
1-Chloro-4-phenylbut-3-yn-2-one (SI-17)[S13]

To a stirred solution of SI-17 (1.53 g, 8.5 mmol) in MeOH (50 mL), NaBH$_4$ (0.48 g, 12.8 mmol) was added at 0 °C. The resulting solution was stirred at room temperature for 2 h. The reaction was quenched with water and the solution was extracted three times with Et$_2$O. The combined organic extracts were washed with water and brine and dried over Na$_2$SO$_4$. After removal of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (hexane/AcOEt = 10/1 ~ 5/1) to furnish SI-18 (1.49 g, 97%).

1H NMR (300 MHz, CDCl$_3$) δ 3.00 (brs, 1H), 3.71-3.83 (m, 2H), 4.83 (dd, J = 6.3 and 4.5 Hz, 1H), 7.31-7.35 (m, 3H), 7.44-7.47 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 49.0, 63.1, 86.1, 86.3, 121.8, 128.4, 128.9, 131.9.

1-Chloro-4-(4-methoxyphenyl)but-3-yn-2-one (SI-20)

2-(Phenylethynyl)oxirane (3i)

3i was prepared from SI-18 (0.84 g, 4.7 mmol) in a similar to a manner as 3e (0.51 g, 76%).

1H NMR (300 MHz, CDCl$_3$) δ 2.99 (d, J = 3.3 Hz, 2H), 3.57 (t, J = 3.3 Hz, 1H), 7.28-7.34 (m, 3H), 7.44-7.47 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 40.2, 49.1, 83.4, 85.9, 122.0, 128.4, 128.8, 131.9.

IR (neat) 755, 830, 926, 1227, 1370, 1486, 1964, 2230, 2996, 3058 cm$^{-1}$
SI-20 was prepared from \(p \)-methoxyphenyl acetylene (SI-19) (0.66 g, 5.0 mmol) in a similar to a manner as SI-17 (0.53 g, 51%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 3.76 (s, 3H), 4.25 (s, 2H), 6.83 (d, \(J = 8.7 \) Hz, 2H), 7.47 (d, \(J = 8.7 \) Hz, 2H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \) 49.6, 55.5, 85.6, 96.7, 110.7, 114.5, 135.5, 162.2, 178.6.

1-Chloro-4-(4-methoxyphenyl)but-3-yn-2-ol (SI-21)

SI-21 was prepared from SI-20 (0.53 g, 2.6 mmol) in a similar to a manner as SI-18 (0.54 g, >99%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 2.67 (brs, 1H), 3.69-3.83 (m, 2H), 3.81 (s, 3H), 4.77-4.84 (m, 1H), 6.81-6.85 (m, 2H), 7.36-7.40 (m, 2H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \) 49.2, 55.3, 63.1, 84.7, 86.4, 113.9, 114.0, 133.4, 160.0.

2-((4-Methoxyphenyl)ethynyl)oxirane (3j)

3j was prepared from SI-21 (0.54 g, 2.6 mmol) in a similar to a manner as 3e (0.37 g, 83%).

\(^1\)H NMR (300 MHz, C\(_6\)D\(_6\)) \(\delta \) 2.35 (ddd, \(J = 6.3, 3.9 \) and 0.6 Hz, 1H), 2.63 (dd, \(J = 6.3 \) and 2.4 Hz, 1H), 3.17 (s, 3H), 3.21 (dd, \(J = 3.9 \) and 2.4 Hz, 1H), 6.52-6.56 (m, 2H), 7.30-7.35 (m, 2H).

\(^{13}\)C NMR (75 MHz, C\(_6\)D\(_6\)) \(\delta \) 40.2, 48.5, 54.8, 83.7, 85.7, 114.4, 114.7, 133.7, 160.4.

HRMS (APCI-TOF) Calcd for C\(_{11}\)H\(_{11}\)O\(_2\) [M+H]\(^+\): 175.0759, Found: 175.0761.

IR (neat) 837, 1247, 1507, 1609, 2046, 2230, 2545, 2839, 2996 cm\(^{-1}\)

(But-3-yn-1-yloxy)(tert-butyl)diphenylsilane (SI-23)
To a stirred solution of 3-butyn-1-ol (SI-22) (0.23 mL, 3.0 mmol) in CH₂Cl₂ (12 mL), triethylamine (0.83 mL), DMAP (0.11 g, 0.9 mmol) and TBDPSCl (0.92 mL, 3.6 mmol) was added at 0 °C and stirred for 12 h. The reaction mixture was quenched with saturated aq. NaHCO₃ and the solution was extracted three times with CH₂Cl₂. The combined organic extracts were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (Hexane/AcOEt = 20/1) to furnish SI-23 (0.93 g, 99%).

1H NMR (300 MHz, CDCl₃) δ 1.10 (s, 9H), 1.97 (t, J = 2.7 Hz, 1H), 2.49 (td, J = 7.2 and 2.7 Hz, 2H), 3.83 (t, J = 7.2 Hz, 2H), 7.39-7.49 (m, 6H), 7.71-7.75 (m, 4H).

6-((tert-Butyldiphenylsilyl)oxy)-1-chloro-2-methylhex-3-yn-2-ol (SI-25)

SI-25 was prepared from SI-23 (0.98 g, 3.2 mmol) and chloroacetone (SI-24) (0.28 mL, 3.5 mmol) in a similar to a manner as SI-17 (0.71 g, 56%).

1H NMR (300 MHz, CDCl₃) δ 1.08 (s, 9H), 1.55 (s, 3H), 2.51 (t, J = 6.9 Hz, 2H), 2.51 (brs, 1H), 3.55 (d, J = 10.8 Hz, 1H), 3.64 (d, J = 10.8 Hz, 1H), 3.79 (t, J = 6.9 Hz, 2H), 7.38-7.48 (m, 6H), 7.71 (dd, J = 7.5 and 1.8 Hz, 4H).

13C NMR (75 MHz, CDCl₃) δ 19.3, 22.8, 26.8, 27.1, 54.3, 62.2, 67.5, 82.0, 82.5, 127.7, 129.8, 133.6, 135.6.

IR (neat) 701, 912, 1111, 1432, 1896, 1958, 2245, 2852, 2948, 3051 cm⁻¹.

tert-Butyl((3-methylbut-3-en-1-yl)oxy)diphenylsilane (3k)

3k was prepared from SI-25 (0.71 g, 1.8 mmol) in a similar to a manner as 3e (0.65 g, 99%).

1H NMR (300 MHz, CDCl₃) δ 1.07 (s, 9H), 1.52 (s, 3H), 2.47 (t, J = 6.9 Hz, 2H), 2.71 (d, J = 5.7 Hz, 1H), 2.95 (d, J = 5.7 Hz, 1H), 3.76 (t, J = 6.9 Hz, 2H), 7.37-7.47 (m, 6H), 7.69 (dd, J = 7.5 and 1.8 Hz, 4H).

13C NMR (75 MHz, CDCl₃) δ 19.2, 22.8, 23.2, 26.8, 47.4, 55.5, 62.2, 80.0, 80.6, 127.7, 129.7, 133.5, 135.6.

IR (neat) 701, 912, 1111, 1342, 1896, 1958, 2245, 2852, 2948, 3051 cm⁻¹.
SI-27 was prepared from 3-methyl-3-buten-1-ol (SI-26) (0.38 mL, 3.9 mmol) in a similar to a manner as SI-23 (1.40 g, 99%).

\[^1\text{H}\text{ NMR (300 MHz, CDCl}_3\text{) }\delta 1.21 (s, 9H), 1.81 (s, 3H), 2.42 (t, J = 6.9 Hz, 2H), 3.91 (t, J = 6.9 Hz, 2H), 4.83 (s, 1H), 4.89 (s, 1H), 7.47-7.56 (m, 6H), 7.83 (dd, J = 7.5 and 2.1 Hz, 4H).\]

\[^{13}\text{C}\text{ NMR (75 MHz, CDCl}_3\text{) }\delta 19.3, 22.9, 27.0, 41.0, 62.9, 111.9, 127.8, 129.7, 134.1, 135.7, 143.0.\]

tert-Butyl((2-(2-methyloxiran-2-yl)ethoxy)diphenylsilane (3l)

To a heterogeneous solution of NaHCO\(_3\) (0.98 g, 11.7 mmol) and SI-27 (1.27 g, 3.9 mmol) in CH\(_2\)Cl\(_2\) (13 mL), \(m\)-CPBA (0.40 g, 4.7 mmol) was added at 0 °C. After stirring at room temperature for 12 h, the reaction was quenched with saturated aq. Na\(_2\)S\(_2\)O\(_3\) at 0 °C. The organic layer was separated, washed with water and dried over Na\(_2\)SO\(_4\). After removal of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (Hexane/AcOEt = 20/1) to furnish 3l (0.40 g, 30%).

\[^1\text{H}\text{ NMR (300 MHz, CDCl}_3\text{) }\delta 1.10 (s, 9H), 1.35 (s, 3H), 1.70-1.79 (m, 1H), 1.91-2.00 (m, 1H), 3.82 (t, J = 6.3 Hz, 2H), 7.39-7.49 (m, 6H), 7.70-7.73 (m, 4H).\]

\[^{13}\text{C}\text{ NMR (75 MHz, CDCl}_3\text{) }\delta 19.2, 21.5, 26.9, 39.7, 54.2, 55.5, 60.7, 127.7, 128.9, 133.7, 135.6.\]

IR (KBr) 702, 936, 1101, 1383, 1581, 1829, 2852, 2935, 3072 cm\(^{-1}\)

Referenced \(^1\text{H}\text{ Diffusion Ordered NMR (}\(^1\text{H}\text{ DOSY)})\)

Internal references: benzene (BEN, 78.1 g/mol, 7.16ppm), cyclooctene (COE, 110 g/mol, 5.48ppm), 1-tetradecene (TDE, 196 g/mol, 5.60ppm/4.79ppm) and squalene (SQU, 410 g/mol, 4.97ppm/1.52ppm). NMR experiments were taken at -70 °C in diethyl ether.

Table S1. D-FW analysis of \(^1\text{H}\text{ DOSY data of Cp}_2\text{ZrCl}_2\text{ in diethyl ether}**

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>FW g/mol</th>
<th>D m(^2)/s</th>
<th>Predicted FW g/mol</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BEN</td>
<td>78.1</td>
<td>1.171E-9</td>
<td>77</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>COD</td>
<td>110</td>
<td>9.220E-10</td>
<td>115</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>TDE</td>
<td>196</td>
<td>7.000E-10</td>
<td>184</td>
<td>-6</td>
</tr>
<tr>
<td>4</td>
<td>SQU</td>
<td>410</td>
<td>4.286E-10</td>
<td>421</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Cp(_2)ZrCl(_2)</td>
<td>6.587E-10</td>
<td></td>
<td>204*</td>
<td></td>
</tr>
</tbody>
</table>

* The solid density of Cp\(_2\)ZrCl\(_2\) is 1.70 g/cm\(^3\). However, our reference system is optimized to test complexes with density 0.9 g/cm\(^3\) (liquid density) ~ 1.0 g/cm\(^3\) (solid density). Therefore, the predicted FWS of Cp\(_2\)ZrCl\(_2\) here are on the base of assumption that the density of Cp\(_2\)ZrCl\(_2\) particle is around 1.0g/cm\(^3\).
Figure S1. D-FW analysis of 1H DOSY data of Cp$_2$ZrCl$_2$ in diethyl ether.

Table S2. D-FW analysis of 1H DOSY data of Cp$_2$ZrCl$_2$ with 20eq dioxane

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>FW g/mol</th>
<th>D m2/s</th>
<th>Predicted FW g/mol</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BEN</td>
<td>78.1</td>
<td>1.281E-9</td>
<td>81</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>COD</td>
<td>110</td>
<td>1.104E-9</td>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>TDE</td>
<td>196</td>
<td>8.724E-10</td>
<td>181</td>
<td>-8</td>
</tr>
<tr>
<td>4</td>
<td>SQU</td>
<td>410</td>
<td>5.791E-10</td>
<td>429</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Cp$_2$ZrCl$_2$</td>
<td>7.047E-10</td>
<td>284*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S2. D-FW analysis of 1H DOSY data of Cp$_2$ZrCl$_2$ with 20eq dioxane

Table S3. D-FW analysis of 1H DOSY data of Cp$_2$ZrCl$_2$ with (1eq n-C$_4$F$_9$MgCl+1eq dioxane+1eq MAO)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>FW g/mol</th>
<th>D m2/s</th>
<th>Predicted FW g/mol</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BEN*</td>
<td>78.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>COD</td>
<td>110</td>
<td>6.402E-10</td>
<td>113</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>TDE</td>
<td>196</td>
<td>4.282E-10</td>
<td>189</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>SQU</td>
<td>410</td>
<td>2.324E-10</td>
<td>417</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Cp$_2$ZrCl$_2$</td>
<td>3.875E-10</td>
<td>215</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Benzene peak overlaps with toluene peak (from MAO)
Figure S3. D-FW analysis of 1H DOSY data of Cp$_2$ZrCl$_2$ with (1eq n-C$_4$F$_9$MgCl+1eq dioxane+1eq MAO).

Referenced 19F Diffusion Ordered NMR (19F DOSY)
Internal references: 1-perfluorobutene (C$_4$F$_8$, 200 g/mol, -86.3ppm, -97.9ppm, -105.4ppm, -122.9ppm, -193.6ppm), 1H-nonafluorobutane (C$_4$F$_9$H, 220 g/mol, -82.7ppm, -129.4ppm, -132.0ppm, -140.2ppm), 1,3,5-tris(trifluoromethyl)benzene (tTFB, 282 g/mol, -64.9). NMR experiments were taken at -70 °C in diethyl ether.

Table S4. D-FW analysis of 19F DOSY data of n-C$_4$F$_9$MgCl in diethyl ether

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>FW g/mol</th>
<th>D m2/s</th>
<th>Predicted FW g/mol</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C$_4$F$_8$</td>
<td>200</td>
<td>2.247E-9</td>
<td>197</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>C$_4$F$_9$H</td>
<td>220</td>
<td>2.029E-9</td>
<td>224</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>tTFB</td>
<td>282</td>
<td>1.698E-9</td>
<td>281</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>n-C$_4$F$_9$Mg</td>
<td>282</td>
<td>1.637E-9</td>
<td>294</td>
<td></td>
</tr>
</tbody>
</table>

Figure S4. D-FW analysis of 19F DOSY data of n-C$_4$F$_9$MgCl in diethyl ether
Table S5. D-FW analysis of 19F DOSY data of n-C_4F_9MgCl with 1eq MAO

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>FW g/mol</th>
<th>D m2/s</th>
<th>Predicted FW g/mol</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C_4F_8</td>
<td>200</td>
<td>1.742E-9</td>
<td>199</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>C_4F_9H</td>
<td>220</td>
<td>1.597E-9</td>
<td>222</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>tTFB</td>
<td>282</td>
<td>1.322E-9</td>
<td>281</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>n-C_4F_9Mg</td>
<td>1.121E-9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S5. D-FW analysis of 19F DOSY data of n-C_4F_9MgCl with 1eq MAO

Table S6. D-FW analysis of 19F DOSY data of n-C_4F_9MgCl with (1eq dioxane + 1eq MAO)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>FW g/mol</th>
<th>D m2/s</th>
<th>Predicted FW g/mol</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C_4F_8</td>
<td>200</td>
<td>1.912E-9</td>
<td>202</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>C_4F_9H</td>
<td>220</td>
<td>1.841E-9</td>
<td>217</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>tTFB</td>
<td>282</td>
<td>1.604E-9</td>
<td>283</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>n-C_4F_9Mg</td>
<td>1.408E-9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S6. D-FW analysis of 19F DOSY data of n-C$_4$F$_9$MgCl with (1eq dioxane + 1eq MAO)

References

