Supporting information

Tin Sulfide and Selenide Clusters soluble in Organic Solvents with the Core Structures of Sn₄S₆ and Sn₄Se₆

Mingdong Zhong,ᵃ Zhi Yang,ᵃ,a Yafei Yi,ᵇ Dongxiang Zhang,ᵃ Kening Sun,ᵃ
Herbert W. Roesky,ᵇ,ᵇ Ying Yang,ᶜ

ᵃSchool of Chemical Engineering and Environment, Beijing Institute of Technology, 100081 Beijing, China
ᵇInstitut für Anorganische Chemie der Georg-August-Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
ᶜSchool of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, China

E-mail: zhiyang@bit.edu.cn; hroesky@gwdg.de

Content:

S2. Supplementary of Mass Spectrometry and NMR Spectroscopy Data
S6. Supplementary UV-Visible Absorption Spectroscopy Data
S7. Raman data of 2 and 3
S8. Plausible Mechanism for the Polymerization of ℇ-Caprolactone Initiated by 2 and 3, and the ¹H NMR of the PCL
S9. References
2. Supplementary of Mass Spectrometry and NMR Spectroscopy Data

Figure S1: ESI-MS(+) mass spectrum of LSnCl₄

Simulations of 2 mass peaks:

Chemical Formula: C₆₀H₁₀₄N₄S₆Si₄Sn₄
Exact Mass: 1664.18
Molecular Weight: 1661.07
m/z: 1664.18 (100.0%), 1659.18 (90.7%), 1662.18 (89.5%), 1660.18 (83.7%), 1663.18 (82.9%), 1664.18 (80.6%), 1660.17 (72.4%), 1657.18 (69.4%), 1658.17 (68.7%), 1658.18 (65.2%), 1655.18 (60.9%), 1662.17 (57.1%), 1666.18 (53.0%), 1659.17 (50.0%), 1661.17 (47.2%), 1656.17 (46.3%), 1656.18 (44.5%), 1663.17 (41.1%), 1667.18 (37.7%), 1657.17 (37.5%), 1655.18 (33.5%), 1664.17 (33.5%), 1655.17 (30.4%), 1668.18 (29.7%), 1665.17 (26.6%), 1654.18 (25.0%), 1654.17 (23.8%), 1669.18 (21.8%), 1666.17 (21.2%), 1653.18 (15.8%), 1653.17 (14.7%), 1667.17 (13.6%), 1670.18 (13.3%), 1668.17 (11.9%), 1652.18 (11.6%), 1652.17 (9.7%), 1671.18 (9.5%), 1651.18 (7.4%), 1672.18 (6.2%), 1670.17 (5.4%), 1650.18 (4.9%), 1669.17 (4.7%), 1651.17 (4.5%), 1667.19 (3.8%), 1673.18 (3.4%), 1649.18 (3.0%), 1650.17 (2.9%), 1665.19 (2.8%), 1664.19 (2.7%), 1666.19 (2.7%), 1662.19 (2.7%), 1663.19 (2.7%), 1669.19 (2.4%), 1670.19 (2.4%), 1671.17 (2.3%), 1674.18 (2.2%), 1668.19 (2.2%), 1660.19 (1.9%), 1648.18 (1.9%), 1661.19 (1.6%), 1672.19 (1.6%), 1671.19 (1.2%), 1672.17 (1.0%), 1659.19 (1.0%), 1647.18 (1.0%)

APCI-MS(+) of 2:
Figure S2: APCI(+) mass spectrum of 2

Simulations of 3 mass peaks:

Chemical Formula: C₆₀H₁₀₄N₄Se₆Si₄Sn₄

Exact Mass: 1951.84

Molecular Weight: 1942.44

m/z: 1941.85 (100.0%), 1940.85 (99.5%), 1942.85 (99.2%), 1943.85 (95.0%), 1939.85 (93.9%), 1944.85 (90.2%), 1938.85 (88.1%), 1945.85 (81.8%), 1937.85 (77.6%), 1946.85 (74.3%), 1936.85 (68.7%), 1947.85 (63.0%), 1935.85 (57.3%), 1948.85 (54.1%), 1934.85 (47.2%), 1949.85 (44.0%), 1943.84 (43.5%), 1941.84 (40.6%), 1945.84 (39.3%), 1942.84 (37.9%), 1944.84 (37.1%), 1933.85 (36.0%), 1950.85 (35.6%), 1939.84 (31.4%), 1940.84 (31.4%), 1947.84 (30.6%), 1946.84 (29.8%), 1932.85 (27.4%), 1951.85 (26.9%), 1938.84 (22.2%), 1948.84 (21.3%), 1937.84 (21.2%), 1952.85 (20.8%), 1949.84 (20.4%), 1931.85 (19.3%), 1953.85 (15.3%), 1930.85 (13.4%), 1936.84 (12.6%), 1950.84 (12.3%), 1951.84 (12.1%), 1954.85 (10.8%), 1935.84 (10.8%), 1929.85 (8.6%), 1955.85 (7.2%), 1952.84 (5.8%), 1934.84 (5.5%), 1953.84 (5.5%), 1928.85 (5.2%), 1940.86 (5.0%), 1942.86 (4.9%), 1956.85 (4.9%), 1933.84 (4.8%), 1941.86 (4.8%), 1939.86 (4.6%), 1943.86 (4.6%), 1938.86 (4.3%), 1944.86 (4.2%), 1937.86 (3.9%), 1945.86 (3.9%), 1936.85 (3.8%), 1946.86 (3.4%), 1935.86 (3.1%), 1947.86 (3.1%), 1957.85 (3.0%), 1927.85 (2.9%), 1948.86 (2.6%), 1934.86 (2.5%), 1954.84 (2.3%), 1955.84 (2.2%), 1933.86 (2.1%), 1949.86 (2.1%), 1932.84 (1.8%), 1958.85 (1.8%), 1950.86 (1.7%), 1931.84 (1.7%), 1932.86 (1.6%), 1926.85 (1.5%), 1951.86 (1.4%), 1931.86 (1.3%), 1959.85 (1.1%), 1952.86 (1.1%)

APCI-MS(+) of 3:
Figure S3: APCI(+) mass spectrum of 3

Figure S4: 119Sn NMR of 2
Figure S5 119Sn NMR, 77Se NMR of 3
3. Supplementary UV-Visible Absorption Spectroscopy Data

Figure S6 shows the UV-visible absorption spectra of compounds 2, 3, and LSnCl in THF.

![Absorption Spectra](image)

The spectra of 2 and 3 display two significant absorption bands, similar to the values of LSnCl recorded in THF solution. Unlike (R\(^{\text{Fc}}\)Sn)\(_4\)Sn\(_8\)S\(_{10}\) [R\(^{\text{Fc}}\) = CMe\(_2\)CH\(_2\)C(Me)=N-N=C(Me)Fc] they are slightly red shifted.\(^{31}\) In 2 and 3 a p(S)→p(Sn) or p(Se)→p(Sn) charge transfer to the Sn-S or Sn-Se skeleton was not observed.
4. Raman data of 2 and 3

Figure S7 Resonance Raman spectra of 2 and 3 of standard samples were recorded at room temperature.

At lower wave numbers (80-900 cm\(^{-1}\)), the Raman spectra of 2 and 3 exhibit similar strong bands at 577, 574 cm\(^{-1}\), respectively. They are the symmetric N-Sn stretching modes of the imine ligand. The Sn–S and Sn-Se stretching modes, which are IR-inactive but Raman-active, are observed at 191, 377 and 315 cm\(^{-1}\), respectively. They are assigned to Sn–S or Sn-Se vibrations.\(^{S2,S3}\)
Scheme S1. Plausible Mechanism for the Polymerization of ε-Caprolactone Initiated by 2 and 3
Figure S8 The 1H NMR of the PCL

References

