Supplementary Information

Stability and Toxicity of Tris-tolyl Bi(V) Dicarboxylates and their Biological Activity against *Leishmania major*

Yih Ching Ong, Victoria L. Blair, Lukasz Kedzierski, Kellie L. Tuck and Philip C. Andrews

Contents

- 1. Experimental details for Compounds 13 31
- 2. ¹H NMR Spectra of Complexes 1 3, 5 11, 13 29
- **3.** Biological graphs for Compounds **25 29** and **32**
- 4. Solid state structures for Compounds 6, 8, 9, 19, 22, 25 28 and 31
- 5. Crystallographic summary of 6, 8, 9, 19, 22, 25 28 and 31

1. Experimental details for Compounds 13 – 31

General synthetic procedure (GP): Stiochiometric amounts of $BiAr_3$ and benzoic acid (1:2) were each dissolved in 5 ml of warm solvent and combined. This was followed by one equivalent of 30% H_2O_2 . The mixture was stirred for 10 minutes and filtered. Crystals were subsequently obtained on allowing the filtrate to stand at room temperature overnight.

Grignard reagents were synthesized under Schlenk conditions in Et_2O by the reaction of stoichiometric ratios of Mg turnings with 2-bromotoluene, 3-bromotoluene and 4-bromotoluene respectively. The resulting Grignard reagent was standardized (reference) and reacted with $BiCl_3$ to obtain the $BiAr_3$ product.

Compounds **4**, **12** and **32** are $Bi(o-Tol)_3$, $Bi(p-Tol)_3$, $Bi(m-Tol)_3$ respectively, these are known compounds and hence will not be discussed in the supplementary.

Synthesis of tris-o-tolylbismuth bis(3,5-dimethylbenzoate), 13

Bi(*o*-Tol)₃ (0.200 g, 0.41 mmol), 3,5-dimethylbenzoic acid (0.124 g, 0.83 mmol) and 100 μL of 30 % H_2O_2 were reacted in warm diethyl ether according to GP1. Yield: 49.0 % (0.157 g); MP: 120-123 °C; ¹H NMR (400 MHz, (CDCl₃, 25 °C): δ = 7.75 (4H, s, *o*-CH), 7.57 (3H, dd, *J* = 7.5 Hz, 1.2 Hz, Tol *o*-C*H*), 7.30 (3H, td, *J* = 7.4 Hz, 1.3 Hz, Tol *m*-C*H*), 7.30 (2H, s, *p*-C*H*), 7.08 (3H, td, *J* = 7.3 Hz, 0.76, Tol *m*-C*H*), 2.46 (9H, s, Tol CH₃), 2.39 (12H, s, CH₃); ¹³C{¹H} (150 MHz, CDCl₃, 25 °C): δ = 172.4 (COO), 143.8 (CH_{ar}), 138.8 (CH_{ar}), 138.3(CH_{ar}), 135.5 (CH_{ar}), 130.0 (CH_{ar}), 129.5 (CH_a), 128.8 (CH_a), 128.4 (CH_a), 128.0 (CH_{ar}), 26.5 (CH₃) , 21.3 (CH₃); MS ESI⁺ 209.0 [Bi], 391.0 [Bi(*o*-Tol)]⁺, 631.1 [Bi(*o*-Tol)₃L]⁺; ESI⁻ 149 [L]⁻; IR 3036 (w), 2914 (w), 1618 (w), 1588 (m), 1527 (m), 1438 (m), 1378 (sh), 1328 (s), 1252 (s), 1204 (sh), 1116 (m), 1037 (m), 986 (sh), 919 (m), 865 (sh), 784 (sh), 747 (s), 676 (sh); Elemental analysis [C₃₉H₃₉BiO₄.5C₆H₅CH₃] (1240.58) Calculated C 71.60 H 6.41 Found C 71.21 H 6.60.

Synthesis of tris-o-tolylbismuth bis(3,5-dihydroxybenzoate), 14

Bi(*o*-Tol)₃ (0.200 g, 0.41 mmol), 3,5-dihydroxybenzoic acid (0.128 g, 0.83 mmol) and 100 μL 30 % H_2O_2 were reacted in warm diethyl ether and THF according to GP1. Yield: 59.4 % (0.192 g); MP: 120 °C (decomp.); ¹H NMR (400 MHz, (CD₃)₂SO, 25 °C): δ = 9.28 (4H, s, OH), 8.33 (3H, d, J = 7.8 Hz, Tol CH), 7.61 (6H, m, Tol CH), 7.50 (3H, t, J = 7.5, Tol CH), 6.57 (4H, d, J = 2.1, CH), 6.25 (2H, t, J = 2.1, ligand CH), 2.58 (9H, s, Tol CH₃); ¹³C{¹H} (100 MHz, (CD₃)₂SO, 25 °C): δ = 169.6 (COO), 162.4 (BiC), 158.0 (COH), 141.3 (CCH₃), 134.0 (CCOO), 133.4 (CH_{ar}), 131.0 (CH_{ar}), 128.6 (CH_{ar}), 107.4 (CH_{ar}), 105.5 (CH_{ar}), 22.8 (CH₃); MS 209.0 [Bi], 391.0 [Bi(*o*-Tol)₂]⁺, 635.1 [Bi(*o*-Tol)₃L]⁺, 725.1[BiL]²⁺; ESI⁻ 153.0 [L]⁻, 787.1 [Bi(*o*-Tol)₃L₂ - H]⁻; IR 3200 (br), 1558 (m), 1448 (m), 1336 (st), 1268 (st), 1203 (sh), 1153 (st), 995 (sh), 950 (m), 847 (m), 769 (sh), 743 (s), 674 (s); Elemental analysis [C₃₅H₃₁BiO₈.2H₂O] (824.64) Calculated C 50.98 H 4.28 Found C 50.81 H 4.58.

Synthesis of tris-o-tolylbismuth bis(2-methoxybenzoate), 15

Bi(*o*-Tol)₃ (0.200 g, 0.41 mmol), 2-methoxybenzoic acid (0.126 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP1. Yield: 34.5 % (0.111 g); MP: 136-137 °C; ¹H NMR (400 MHz, (CD₃)₂SO, 25 °C): δ = 8.34 (3H, d, *J* = 7.9 Hz, Tol C*H*), 7.59 (6H, m, Tol C*H*), 7.48 (3H, t, *J* = 7.5 Hz, Tol C*H*), 7.29 (2H, m, C*H*), 7.14 (2H, dd, *J* = 7.7 Hz, 1.7 Hz, C*H*), 6.94 (2H, d, J = 7.9 Hz, C*H*), 6.81 (2H, td, J = 7.5 Hz, 0.8 Hz, C*H*), 3.64 (6H, s, CH₃), 2.60 (9H, s, Tol C*H*₃); ¹³C{¹H} (150 MHz, CDCl₃),

25 °C): δ = 171.2 (COO), 163.0 (BiC), 158.1 (COCH₃), 134.9 (CH_{ar}), 133.2 (CH_{ar}), 131.0 (CH_{ar}), 130.8 (CH_{ar}), 130.7 (CH_{ar}), 128.3 (CH_{ar}), 125.6 (CH_{ar}), 120.0 (CCOO), 111.9 (CH_{ar}), 55.8 (OCH₃), 23.8 (CH₃); MS ESI⁺ 209.0 [Bi], 391.0 [Bi(*o*-Tol)₂], 633.1 [Bi(*o*-Tol)₃L]⁺; ESI⁻ 151.1 [L]⁻, 693.2 [Bi(*m*-Tol)₂L₂]⁻; IR 2941 (w), 2833 (w), 2113 (w), 1593 (m), 1483 (w), 1458 (m), 1435 (m), 1375 (w), 1327 (s), 1297 (m), 1266 (sh), 1245 (sh), 1206(sh), 1173 (sh), 1161 (sh), 1139 (sh), 1047 (m), 1096 (sh), 1017 (m), 991 (sh), 845 (sh), 784 (sh), 743 (s), 705 (sh); Elemental analysis [C₃₇H₃₅BiO₆.H₂O] (802.68) Calculated C 55.37, H 4.65; Found 55.26, H 4.48.

Synthesis of tris-o-tolylbismuth bis(5-chlorosalicyate), 16

Bi(*o*-Tol)₃ (0.200 g, 0.41 mmol), 5-chlorosalicylic acid (0.143 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 28.6 % (0.097 g); MP: 152-153 °C; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 11.69 (2H, s, OH), 8.37 (3H, dd, *J* = 7.9 Hz, 1.2 Hz, Tol CH), 7.56 (8H, m, Tol CH + ligand CH), 7.48 (3H, td, *J* = 7.4 Hz, 1.2 Hz, Tol CH), 7.21 (2H, dd, *J* = 8.7 Hz, 2.7 Hz, CH), 6.76 (2H, d, *J* = 8.8, CH), 2.66 (9H, s, Tol CH₃); ¹³C{¹H} (100 MHz, (CD₃)₂SO, 25 °C): δ = 172.6 (COO), 161.9 (COH), 160.2 (BiC), 142.2 (BiC), 142.2 (CCH₃), 134.7 (CH_{ar}), 134.0 (CH_{ar}), 131.8 (CH_{ar}), 130.1 (CH_{ar}), 129.1 (CH_{ar}), 123.0 (i-Car), 118.5 (CH_{ar}), 117.0 (CH_{ar}), 23.8 (CH₃); MS ESI⁺ 209.0 [Bi], 391.0 [Bi(*o*-Tol)₂]⁺, 653.1 [Bi(*o*-Tol)₃L]⁺; ESI⁻ 171.0 [L]⁻; IR 2967 (br), 1629 (sh), 1579 (sh), 1465 (sh), 1407 (sh), 1365 (sh), 1342 (sh), 1287 (sh), 1232 (sh), 1205 (sh), 1104 (sh), 995 (sh), 896 (w), 809 (sh), 744 (sh), 713 (sh); Elemental analysis [C₃₅H₂₉BiCl₂O₆] (825.49) Calculated C 50.93 H 3.54 Found C 50.72 H 3.59.

Synthesis of tris-m-tolylbismuth bis(5-bromosalicyate), 17

Bi(*o*-Tol)₃ (0.200 g, 0.41 mmol), 5-bromosalicylic acid (0.180 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 20.0 % (0.075 g); MP: 152-154 °C; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 11.7 (2H, s, OH), 8.36 (3H, dd, *J* = 8.0 Hz, 1.0 Hz, *o*-CH_{ar}), 7.70 (2H, d, *J* = 2.4 Hz, (O₂C)CCHC(Br)), 7.59 (3H, d, *J* = 7.6 Hz, *m*-CH_{ar}), 7.59 (3H, d, *J* = 7.6 Hz, *m*-CH_{ar}), 7.55 (3H, t, *J* = 7.6 Hz, *p*-CH_{ar}), 7.48 (3H, t, *J* = 7.4 Hz, 1.1 Hz, *m*-CH_{ar}), 7.34 (2H, dd, *J* = 8.9 Hz, 2.5 Hz, *p*-CH_{ar}), 6.71 (2H, d, *J* = 8.7 Hz, *m*-CH_{ar}), 2.66 (9H, s, CH₃);¹³C{¹H} (100 MHz, CDCl₃, 25 °C): δ = 172.4 (COO), 161.8 (COH), 160.6 (BiC), 142.1 (CCH₃), 136.8 (CH_{ar}), 134.7 (CH_{ar}), 134.0 (CH_{ar}), 131.8 (CH_{ar}), 129.1 (CH_{ar}), 118.9 (CH_{ar}), 117.5 (*i*-C_{ar}), 110.0 (CH_{ar}), 23.9 (CH₃); MS 208.9 [Bi]; 391.0 [Bi(*m*-Tol)₂]⁺; 697 [Bi(*m*-Tol)₃LH + H]⁺; ESI⁻ 216.9 [L]⁻; IR 3047 (w), 2973 (w), 2863 (w), 1626 (sh), 1583 (sh), 1561 (sh), 1464 (sh), 1335 (sh), 1287 (sh), 1236 (sh), 1098 (sh), 1035 (w), 1001 (sh), 898 (w), 879 (w), 806 (sh), 742 (sh), 695 (sh); Elemental analysis [C₃₅H₂₉BiBr₂O₆] (914.40) Calculated C 45.97 H 3.20 Found C 45.81 H 3.34.

Synthesis of tris-o-tolylbismuth bis(2-{[3-(Trifluoromethyl)phenyl]amino}benzoate), 18

Bi(*o*-Tol)₃ (0.200 g, 0.41 mmol), flufenamic acid (0.233 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 14.3 % (0.064 g); MP: 134-136 °C; ¹H NMR (400 MHz, (CD₃)₂SO, 25 °C): δ = 9.47 (2H, s, NH), 8.41 (3H, d, *J* = 8.2 Hz, CH_{ar}), 7.70 (2H, dd, *J* = 8.0 Hz, 1.6 Hz, CH_{ar}), 7.59 (6H, m, CH_{ar}), 7.46 (5H, m, CH_{ar}), 7.31 (2H, t, *J* = 7.6 Hz, CH_{ar}), 7.25 (4H, t, *J* = 7.8 Hz, CH_{ar}), 7.17 (4H, m, CH_{ar}), 6.78 (2H, t, *J* = 7.5 Hz, CH_{ar}), 2.56 (9H, s, CH₃); ¹³C{¹H} (100 MHz, (CD₃)₂SO, 25 °C): δ = 171.3 (COO), 162.2 (BiC), 144.6 (*C*(NH)), 144.1 (*C*(NH)), 142.3 (CF₃), 141.4 (*C*(CH₃)), 138.8 (CH_{ar}), 134.2 (CH_{ar}), 133.7 (CH_{ar}), 132.8 (CH_{ar}), 132.1 (CH_{ar}), 131.3 (CH_{ar}), 130.5 (CH_{ar}), 130.0 (CCF₃), 128.9 (CH_{ar}), 122.7 (CH_{ar}), 119.0 (CH_{ar}), 117.9 (CCOO), 115.2 (CH_{ar}), 22.9 (CH₃); MS ESI⁺ 209.0 [Bi], 391.0 [Bi(*o*-Tol)₂]⁺, 762.1 [Bi(*o*-Tol)₃L]⁺; ESI⁻ 280.1 [L]⁻; IR 3258 (w), 1607 (m), 1579 (sh), 1502 (sh),

1460 (m), 1442 (m), 1414 (w), 1332 (sh), 1265 (sh), 1262 (sh), 1235 (m), 1208 (w), 1235 (sh), 1165 (sh), 1118 (sh), 1092 (m), 1069 (sh), 1044 (w), 995 (m), 928 (w), 898 (w), 855 (w), 796 (sh), 743 (sh), 697 (sh), 665 (sh);Elemental analysis $[C_{49}H_{39}BiF_6N_2O_4]$ (1042.83) Calculated C 56.44 H 3.77 N 2.69 Found C 56.48 H 3.73 N 2.62.

Synthesis of tris-m-tolylbismuth bis(5-chlorosalicyate), 19

Bi(*m*-Tol)₃ (0.200 g, 0.41 mmol), 5-chlorosalicylic acid (0.143 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 26.6 % (0.090 g); MP: 182-185 °C; ¹H NMR (600 MHz, CDCl₃, 25 °C): δ = 8.00 (3H, s, Tol *o*-C*H*), 7.98 (3H, d, 3J = 8.2 Hz, Tol *o*-C*H*), 7.75 (2H, d, *J* = 2.6 Hz, *o*-C*H*), 7.56 (3H, t, *J* = 7.8 Hz, Tol *m*-C*H*), 7.33 (3H, d, *J* = 7.6 Hz, Tol *p*-C*H*), 7.26 (2H, dd, *J* = 8.7 Hz, 2.7 Hz, *p*-C*H*), 6.81 (2H, d, *J* = 8.8 Hz, *m*-C*H*), 2.43 (9H, s, Tol CH₃); ¹³C{¹H} (150 MHz, (CD₃)₂SO, 25 °C): δ = 173.8 (COO), 160.1 (BiC), 158.5 (COH), 142.3 (CCl), 134.4 (CH_{ar}), 132.6 (CH_{ar}), 131.2 (CH_{ar}), 130.5 (CH_{ar}), 123.2 (CCH₃); MS ESI+ 209.0 [Bi], 391.2 [Bi(*m*-Tol)₂]⁺, 653.2 [Bi(*m*-Tol)₃L]⁺; ESI- 127.0 [L-COO]⁻, 170.9 [L]⁻; IR 2853 (br), 1626 (sh), 1582 (sh), 1561 (sh), 1465 (sh), 1405 (sh), 1379 (sh), 1352 (sh), 1288 (sh), 1232 (sh), 1210 (sh), 1066 (m), 980 (sh), 900 (m), 867 (w), 814 (sh), 772 (sh), 713 (sh), 674 (sh); Elemental analysis [C₃₅H₂₉BiCl₂O₆] (825.49) Calculated C 50.93 H 3.54 Found C 51.40 H 3.96.

Synthesis of tris-m-tolylbismuth bis(5-bromosalicyate), 20

Bi(*m*-Tol)₃ (0.200 g, 0.41 mmol), 5-bromosalicylic acid (0.180 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 48.0 % (0.180 g); MP: 190-192 °C; ¹H NMR (600 MHz, CDCl₃, 25 °C): δ = 8.00 (3H, s, Tol *o*-C*H*), 7.98 (3H, d, ³*J* = 8.2 Hz, Tol *o*-C*H*), 7.90 (2H, d, *J* = 2.4 Hz, *o*-C*H*), 7.56 (3H, t, *J* = 7.7 Hz, *o*-C*H*), 7.39 (2H, dd, *J* = 8.6 Hz, 2.4 Hz, Tol *m*-C*H*), 7.33 (3H, d, ³*J* = 7.5 Hz, Tol *p*-C*H*), 6.76 (2H, d, *J* = 8.8 Hz, *m*-C*H*), 2.43 (9H, s, Tol CH₃); ¹³C{¹H} (150 MHz, CDCl₃, 25 °C): δ = 173.7 (COO), 160.6 (COH), 158.4 (BiC), 142.3 (CCH₃), 137.2 (CH_{ar}), 134.3 (CH_{ar}), 133.5 (CH_{ar}), 132.5 (CH_{ar}), 131.5 (CH_{ar}), 131.1 (CH_{ar}), 119.0 (CH_{ar}), 117.1 (CBr), 110.2 (CCOO), 22.2 (CH₃); MS ESI⁺ 209.0 [Bi], 391.2 [Bi(*m*-Tol)₂]⁺, 699.1 [Bi(*m*-Tol)₃L]⁺; ESI⁻ 170.9 [L-COO]⁻, 214.9 [L]⁻; IR 2856 (br), 1624 (sh), 1584 (sh), 1560 (m), 1466 (sh), 1399 (sh), 1377 (sh), 1346 (sh), 1290 (sh), 1244 (sh), 1209 (m), 1099 (w), 1065 (w), 999 (w), 980 (sh), 900 (w), 812 (sh), 768 (sh), 698 (sh), 673 (sh); Elemental analysis [C₃₅H₂₉BiBr₂O₆.(C₂H₅)₂O] (988.52) Calculated C 47.39 H 3.98 Found C 46.96 H 3.74.

Synthesis of tris-m-tolylbismuth bis(2', 4'-difluoro-4-hydroxybiphenyl-3-carboxylate), 21

Bi(*m*-Tol)₃ (0.2 g, 0.41 mmol), Diflunisal (0.21 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 56.2 % (0.226 g); MP: 190 °C (decomp); ¹H NMR (400 MHz, (CD₃)₂SO, 25 °C): δ = 8.05 (3H, s, Tol *o*-C*H*), 7.98 (3H, d, *J* = 7.7 Hz, Tol *o*-C*H*), 7.90 (2H, s, *o*-C*H*), 7.86 (3H, t, *J* = 7.7 Hz, Tol *m*-C*H*), 7.54 (4H, m, C*H*), 7.44 (3H, d, *J* = 7.7 Hz, Tol *p*-C*H*), 7.33 (2H, td, *J* = 10.3 Hz, 2.7 Hz, C*H*), 7.16 (2H, td, *J* = 8.4 Hz, 2.5 Hz, C*H*), 6.94 (2H, d, *J* = 8.6 Hz, C*H*), 2.37 (9H, s, C*H*₃); ¹³C{¹H} (100 MHz, (CD₃)₂SO, 25 °C): δ = 161.2 (BiC), 158.7 (CF), 142.1 (CF), 134.5 (CHar), 132.4 (CH_{ar}), 131.4 (CH_{ar}), 117.3 (CH_{ar}), 111.7 (CH_{ar}), 111.5 (CH_{ar}), 115.2 (COH), 104.4 (CH_{ar}), 22.1 (CH₃); MS ESI⁺ 209.0 [Bi], 391.2 [Bi(*m*-Tol)₂]⁺, 731.2 [Bi(*m*-Tol)₃L]⁺; ESI⁻ 205.0 [L-COO]⁻, 249.0 [L]⁻; IR 3019 (br), 1630 (m), 1591 (m), 1561 (sh), 1508 (sh), 1475 (sh), 1427 (m), 1409 (m), 1475 (sh), 1381 (s), 1359 (sh), 1246 (s), 1220 (sh), 1136 (sh), 1094 (sh), 1034 (w), 998 (w), 965 (sh), 892 (sh), 869 (sh), 843 (sh), 814 (sh), 765 (sh), 735 (m), 718 (sh), 670 (sh); Elemental Analysis [C₄₇H₃₅BiF₄O₆] (980.77) Calculated C 57.56 H 3.60 Found C 57.58 H 3.77.

Synthesis of *tris-m*-tolylbismuth bis(2-[(3-chloro-2-methylphenyl)amino]benzoate), 22

Bi(*m*-Tol)₃ (0.400 g, 0.82 mmol), tolfenamic acid (0.434 g, 1.64 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 59.6 % (0.491 g); MP: 130-134 °C; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 9.49 (2H, s, NH), 8.00 (3H, s, Tol *o*-C*H*), 7.95 (3H, d, ³*J* = 8.0 Hz, Tol *o*-C*H*), 7.89 (2H, dd, *J* = 8.0 Hz, 1.6 Hz, *o*-C*H*), 7.37 (3H, t, *J* = 7.7 Hz, Tol *m*-C*H*), 7.16 (3H, d, *J* = 7.4 Hz, Tol *p*-C*H*), 7.07 (6H, m, C*H*), 6.97 (2H, t, *J* = 7.9 Hz, C*H*), 6.73 (2H, dd, *J* = 8.6 Hz, 0.7 Hz, C*H*), 6.58 (2H, td, *J* = 7.5 Hz, 1.0 Hz, C*H*), 2.24 (9H, s, Tol CH₃), 2.13 (6H, s, CH₃); ¹³C{¹H} (150 MHz, CDCl₃, 25 °C): δ = 174.3 (COO), 160.7 (BiC), 147.6 (*i*-C_{ar}), 141.5 (*i*-C_{ar}), 135.5 (*i*-C_{ar}), 134.4 (CH_{ar}), 133.0 (CH_{ar}), 132.9 (CH_{ar}), 131.8 (CH_{ar}), 131.0 (CH_{ar}), 130.9 (*i*-C_{ar}), 126.8 (CH_{ar}), 124.7 (CH_{ar}), 121.9 (CH_{ar}), 116.9 (CH_{ar}), 115.6 (CCOO), 113.6 (CH_{ar}), 22.0 (CH₃), 15.0 (CH₃); MS ESI⁺ 209.0 [Bi], 391.2 [Bi(*m*-Tol)₂]⁺, 742.2 [Bi(*m*-Tol)₃L]⁺; ESI⁻ 216.0 [L - COO]⁻, 260.0 [L]⁻; IR 3241 (br), 3051 (w), 1654 (w), 1612 (sh), 1581 (sh), 1499 (sh), 1458 (m), 1438 (m), 1359 (s), 1159 (m), 1042 (w), 1012 (m), 979 (sh), 908 (m), 849 (sh), 810 (sh), 774 (sh), 747 (sh), 702 (m), 670 (sh); Elemental analysis [C₄₉H₄₅BiCl₂N₂O₄.(C₂H₅)₂O] (1077.90) Calculated C 59.06 H 4.96 N 2.60 Found C 59.66 H 4.50 N 3.17

Synthesis of tris-p-tolylbismuth bis(3,5-dimethylbenzoate), 23

Bi(*p*-Tol)₃ (0.200 g, 0.41 mmol), 3,5-dimethylbenzoic acid (0.125 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 33.4 % (0.107 g), MP: 166 °C (decomp.); ¹H NMR (400 MHz, (CD₃)₂SO, 25 °C): δ = 8.05 (6H, d, *J* = 8.2 Hz, Tol o-*CH*), 7.51 (6H, d, *J* = 8.1 Hz, Tol m-*CH*),7.46 (4H, s, *o*-*CH*), 7.12 (2H, s, *p*-*CH*), 2.32 (9H, s, Tol *CH*₃), 2.26 (12H, s, *CH*₃); ¹³C{¹H} (100 MHz, (CD₃)₂SO, 25 °C): δ =171.8 (COO), 157.5 (BiC), 141.0 (CCH₃), 137.4 (CCH₃), 133.4 (CCOO), 133.2 (BiCCH), 132.3 (Bi(OOC)CCH), 132.0 ((OOC)CCHC(CH₃)), 127.4 (C(CH₃)*C*HC(CH₃)), 20.8 (*C*H₃), 20.7 (*C*H₃); MS ESI⁺ 208.8 [Bi], 527.1 [Bi(*p*-Tol)L + DMSO]⁺, 631.1 [Bi(*p*-Tol)₃L]⁺; ESI- 149.1 [L]⁻, 391.1 [Bi(*p*-Tol)₂]; IR 3054 (w), 2916 (w), 2863 (w), 1577 (sh), 1560 (m), 1482 (m), 1482 (m), 1444 (m), 1381 (sh), 1344 (s), 1309 (sh), 1206 (sh), 1185 (sh), 1115 (w), 1039 (w), 999 (sh), 944 (w), 921 (w), 868 (sh), 783 (sh), 768 (sh), 677 (sh); Elemental analysis [C₃₉H₃₉BiO₄.H₂O] (798.73) Calculated C 58.62 H 5.17 Found C 58.28, H 5.08.

Synthesis of *tris-p*-tolylbismuth bis(3,5-dihydroxybenzoate), 24

Bi(*p*-Tol)₃ (0.200 g, 0.41 mmol), 3,5-dihydroxybenzoic acid (0.128 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 0.196 g (0.196 g); MP: 155 °C (decomp);¹H NMR (400 MHz, (CD₃)₂SO, 25 °C): δ = 9.39 (4H, s, OH), 8.00 (6H, d, *J* = 8.3 Hz, Tol *o*-C*H*), 7.51 (6H, d, *J* = 8.7 Hz, Tol *m*-C*H*), 6.71 (4H, d, *J* = 2.2, *o*-C*H*), 6.30 (2H, t, *J* = 2.3, *p*-C*H*), 2.34 (9H, s, Tol CH₃); ¹³C{¹H} (100 MHz, (CD₃)₂SO, 25 °C): δ = 171.7 (COO), 158.1 (BiC), 157.4 (*i*-C_{ar}), 141.1 (*i*-C_{ar}), 134.3 (CH_{ar}), 133.1 (CH_{ar}), 131.9 (CH_{ar}), 107.7 (CH_{ar}), 106.1 (CH_{ar}), 20.9 (CH_{ar}); MS ESI⁺ 208.9 [Bi], 391.0 [Bi(*p*-Tol)₂]⁺, [Bi(*p*-Tol)₃L]⁺, ESI⁻ 153.0 [L]⁻; IR 3237 (br), 1543 (s), 1482 (m), 1446 (w), 1343 (s), 1294 (m), 1204 (w), 1184 (sh), 1151 (s), 1099 (w), 995 (sh), 953 (m), 858 (m), 776 (s), 677 (m); Elemental analysis [C₃₅H₃₁BiO₈] (788.61) Calculated C 53.31 H 3.96 Found C 53.66 H 4.24.

Synthesis of *tris-p*-tolylbismuth bis(2-methoxybenzoate), **25**

Bi(*p*-Tol)₃ (0.200 g, 0.41 mmol), 2-methoxybenzoic acid (0.126 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 68.7 % (0.221 g); MP: 153-156 °C; ¹H NMR (400 MHz, (CD₃)₂SO, 25 °C): δ = 8.09 (6H, dt, *J* = 8.2 Hz, 2.3 Hz, Tol *o*-C*H*), 7.52 (6H, dd, *J* = 8.5 Hz, 0.6

Hz, Tol *m*-CH), 7.39 (4H, m, CH), 7.02 (2H, d, J = 8.2 Hz, CH), 6.09 (2H, t, J = 7.35 Hz, CH), 3.77 (6H, s, OCH₃), 2.35 (9H, s, Tol CH₃); ¹³C{¹H} (100 MHz, (CD₃)₂SO, 25 °C): $\delta = 171.9$ (COO), 157.8 (BiC), 156.8 (COCH₃), 141.1 (CH_{ar}), 133.4 (CH_{ar}), 132.0 (CH_{ar}), 130.3 (CH_{ar}), 123.7 (CH_{ar}), 119.9 (CCOO), 112.5 (CH_{ar}), 55.8 (OCH₃), 20.8 (CH₃); MS ESI⁺ 209.0 [Bi], 391.0 [Bi(p-Tol)₂]⁺, 633.1 [Bi(p-Tol)₃L]⁺; 151.1 [L]⁻; IR 2953 (br), 2832(w), 1686 (w), 1586 (sh), 1560 (sh), 1482 (sh), 1463 (sh), 1389 (sh), 1343 (sh), 1288 (m), 1245 (m), 1143 (sh), 1097 (m), 1048 (sh), 1017 (sh), 999 (sh), 956 (w), 852 (w), 789 (w), 755 (sh), 660 (sh); Elemental analysis [C₃₇H₃₅BiO₆.H₂O] (802.23) Calculated C 55.37 H4.65 Found C 55.77 H 4.51.

Synthesis of tris-p-tolylbismuth bis(2-ethoxybenzoate), 26

Bi(*p*-Tol)₃ (0.200 g, 0.41 mmol), 2-ethoxybenzoic acid (0.125 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 42.9 % (0.143 g); MP: 163-165 °C; ¹H NMR (400 MHz, (CD₃)₂SO, 25 °C): δ = 8.13 (6H, d, *J* = 8.1 Hz, Tol *o*-CH), 7.50 (6H, d, *J* = 8.0 Hz, Tol *m*-CH), 7.36 (4H, m, CH), 7.00 (2H, d, *J* = 8.0 Hz, CH), 6.88 (2H, t, *J* = 8.0 Hz, CH), 4.00 (4H, q, *J* = 6.7 Hz, OCH₂CH₃), 2.35 (9H, s, Tol CH₃), 1.31 (6H, t, *J* = 7.0 Hz, OCH₂CH₃); ¹³C{¹H} (100 MHz, (CD₃)₂SO, 25 °C): δ = 172.3 (COO), 157.3 (BiC), 157.0 (i-Car), 140.9 (CCH3), 133.3 (CH_{ar}), 131.8 (CH_{ar}), 130.3 (CH_{ar}), 123.9 (CH_{ar}), 119.9 (CH_{ar}), 113.4 (CH_{ar}), 64.9 (OCH₂CH₃), 20.8 (CH₃), 15.2 (OCH₂CH₃); MS ESI+ 208.9 [Bi], 647.1 [Bi(*p*-Tol)₃L] +, [Bi(*p*-Tol)₃L₂ + Na]⁺; ESI- [L]⁻, [Bi(*p*-Tol)₂]; IR 3055 (w), 2982 (w), 2918 (w), 2872 (w), 1583 (sh), 1546 (m), 1484 (sh), 1385 (m), 1352 (s), 1292 (m), 1268 (sh), 1235 (m), 1163 (sh), 1146 (sh), 1110 (m), 999 (sh), 955 (w), 922 (m), 851 (sh), 809 (sh), 790 (sh), 754 (sh), 703 (sh), 667 (sh);Elemental analysis [C₃₉H₃₉BiO₆.H₂O] (830.27) Calculated C 56.39 H 4.97 Found C 56.89 H 4.87.

Synthesis of tris-p-tolylbismuth bis(4-nitrobenzoate), 27

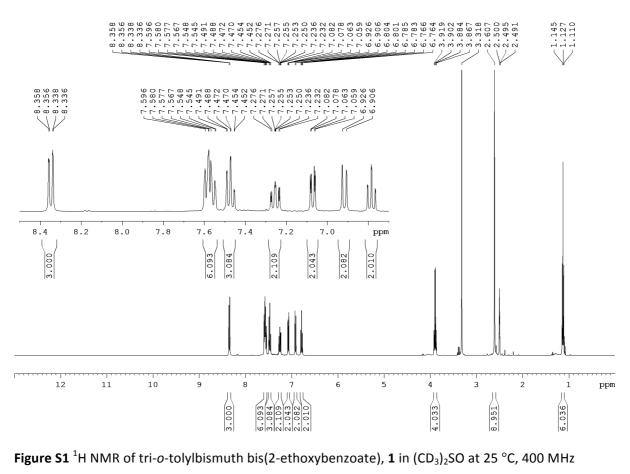
Bi(*p*-Tol)₃ (0.200 g, 0.41 mmol), 4-nitrobenzoic acid (0.138 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 43.8 %, (0.146 g); MP: 94-98 °C; ¹H NMR (600 MHz, (CD₃)₂SO, 25 °C): δ = 8.22 (4H, d, *J* = 8.8 Hz, *o*-C*H*), 8.07 (10H, m, *m*-C*H* + Tol *o*-C*H*), 7.55 (6H, dd, *J* = 8.8 Hz, 0.5 Hz, Tol *m*-C*H*), 2.34 (9H, s, CH₃); ¹³C{¹H} (150 MHz, (CD₃)₂SO, 25 °C): δ = 169.4 (COO), 155.6 (BiC), 149.5 (CNO₂), 141.6 (CCH₃), 138.2 (CH_{ar}), 133.4 (CH_{ar}), 132.3 (CH_{ar}), 130.8 (CH_{ar}), 123.5 (CCOO), 20.9 (CH₃); MS ESI⁺ 208.9 [Bi], 648.1 [Bi(*p*-Tol)₃L]⁺, ESI⁻ 166.0 [L]⁻; IR 3052 (w), 1624 (w), 1583 (m), 1520 (sh), 1484 (w), 1406 (w), 1388 (w), 1331 (st), 1309 (st), 1205 (w), 1184 (sh), 1164 (sh), 1129 (sh), 1102 (sh), 1040 (w), 1012 (sh), 996 (sh), 876 (sh), 831 (sh), 792 (sh), 722 (sh); Elemental analysis [C₃₅H₂₉BiN₂O₈] (814.60) Calculated C 51.61 H 3.59 N 3.44 Found C 51.28 H 3.59 N 3.36

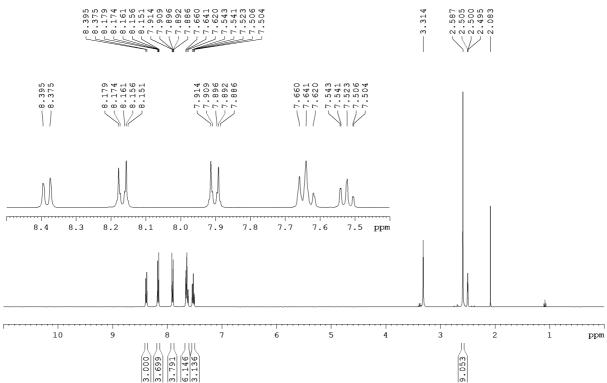
Synthesis of tris-p-tolylbismuth bis(5-chlorosalicyate), 28

Bi(*p*-Tol)₃ (0.200 g, 0.41 mmol), 5-chlorosalicylic acid (0.143 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 80.4 % (0.272 g); MP: 201-203 °C; ¹H NMR (600 MHz, CDCl₃, 25 °C): δ = 11.59 (2H, s, OH), 8.07 (6H, d, *J* = 8.4 Hz, *o*-CH_{ar}), 7.73 (2H, d, *J* = 2.3 Hz, *o*-CH_{ar}), 7.45 (6H, d, *J* = 8.2 Hz, *m*-CH_{ar}), 7.25 (2H, dd, CH_{ar}, *J* = 8.8 Hz, 2.4 Hz, CH_{ar}), 6.80 (2H, d, CH_{ar}, *J* = 8.7 Hz, 2.41, CH_{ar}), 2.41 (9H, s, CH₃); ¹³C{¹H} (150 MHz, (CD₃)₂SO, 25 °C): δ = 173.9 (COO), 160.1 (COH), 155.7 (BiC), 142.2 (CCH₃), 134.4 (CH_{ar}), 134.0 (CH_{ar}), 132.5 (CH_{ar}), 130.5 (CH_{ar}), 123.1 (CCOO), 118.5 (CCl), 116.4 (CH_{ar}), 21.6 (CH₃); MS ESI⁺ 209.0 [Bi], 653.0 [Bi(p-Tol)₃L]⁺, ESI⁻ 171.0 (L]⁻; IR 3059 (w), 2919 (w), 2861 (w), 1629 (sh), 1586 (sh), 1586 (sh), 1558 (sh), 1467 (sh); Elemental analysis [C₃₅H₂₉BiCl₂O₆] (825.49) Calculated C 50.93 H 3.54 Found C 50.83 H 3.65.

Synthesis of tris-p-tolylbismuth bis(5-bromosalicyate), 29

Bi(*p*-Tol)₃ (0.200 g, 0.41 mmol), 5-bromosalicylic acid (0.180 g,0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 93.3 % (0.350 g); MP: 201-203 °C; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 11.61 (2H, s, OH), 8.07 (6H, d, *J* = 8.2 Hz, *o*-CH_{ar}), 7.87 (2H, d, *J* = 2.1 Hz, CH_{ar}), 7.45 (6H, d, *J* = 8.0 Hz, *m*-CH_{ar}), 7.38 (2H, dd, *J* = 8.9 Hz, 2.1 Hz, CH_{ar}), 6.75 (2H, d, *J* = 8.7 Hz, CH_{ar}), 2.41 (9H, s, CH₃); ¹³C{¹H} (100 MHz, CDCl₃, 25 °C): δ = 173.8 (COO), 160.5 (COH), 155.7 (BiC), 142.2 (CCH₃), 137.2 (CH_{ar}), 134.0 (CH_{ar}), 133.4 (CH_{ar}), 132.5 (CH_{ar}), 119.0 (CH_{ar}), 117.0 (CBr), 110.2 (CCOO), 21.6 (CH₃); MS ESI⁺ 209.0 [Bi], 698.9 [Bi(*p*-Tol)₃L]⁺; ESI⁻ 216.9 (L]⁻; IR 3057 (w), 1625 (sh), 1586 (sh), 1554 (sh), 1554 (sh), 1465 (sh), 1465 (sh), 1399 (sh), 1399 (s), 1376 (s), 1345 (s), 1240 (sh), 1186 (sh), 1099 (m), 1052 (w), 997 (sh), 814 (sh), 793 (sh), 738 (w), 698 (sh); Elemental analysis [C₃₅H₂₉BiBr₂O₆] (912.01) Calculated C 45.97 H 3.20 Found C 46.05 H 3.31.


Synthesis of tris-p-tolylbismuth bis(2', 4'-difluoro-4-hydroxybiphenyl-3-carboxylate), 30


Bi(*p*-Tol)₃ (0.200 g, 0.41 mmol), Diflunisal (0.210 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 49.7 % (0.200 g); MP: 211 °C (decomp); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 11.60 (2H, s, OH), 8.00 (6H, d, *J* = 8.3 Hz, *o*-C*H*_{ar}), 7.82 (2H, s, C*H*_{ar}), 7.34 (8H, m, *m*-C*H*_{ar} + C*H*_{ar}), 7.22 (2H, m, C*H*_{ar}), 6.80 (6H, m, C*H*_{ar}), 2.29 (9H, s, C*H*₃); ¹³C{¹H} (100 MHz, CDCl₃, 25 °C): δ = 174.6 (COO), 161.2 (BiC). 158.5 (CF), 156.1 (CF), 142.0 (CCH₃), 135.0 (CCOO), 134.0 (*o*-C*H*_{ar}), 132.4 (*m*-C*H*_{ar}), 131.5 (C*H*_{ar}), 131.2 (C*H*_{ar}), 125.4 (*i*-C_{ar}), 117.3 (C*H*_{ar}), 115.5 (COH), 111.7 (C*H*_{ar}), 111.5 (C*H*_{ar}), 104.5 (C*H*_{ar}), 21.6 (CH₃); MS ESI+ 208.9 [Bi], 731.0 [Bi(*p*-Tol)₃L]⁺; ESI⁻ 249.0 [L]⁻; IR 2868 (w), 1629 (sh), 1529 (w), 1561 (sh), 1508 (w), 1478 (sh), 1431 (sh), 1380 (s), 1366 (s), 1296 (sh), 1244 (s), 1202 (sh), 1186 (sh), 1138 (sh), 1104 (sh), 1033 (w), 996 (sh), 966 (sh), 891 (sh), 853 (sh), 812 (w), 792 (sh), 731 (sh), 714 (sh), 663 (sh); Elemental Analysis [C₄₇H₃₅BiF₄O₆] (980.77) Calculated C 57.56 H 3.60 Found C 57.61 H 3.68

Synthesis of tris-p-tolylbismuth bis(2-[(3-chloro-2-methylphenyl)amino]benzoate), 31

Bi(*p*-Tol)₃ (0.200 g, 0.41 mmol), Tolfenamic acid (0.217 g, 0.83 mmol) and 100 μL 30 % H₂O₂ were reacted in warm diethyl ether according to GP. Yield: 55.4 % (0.228 g); MP: 175-177 °C; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 9.59 (2H, s, NH), 8.15 (6H, d, *o*-CH_{ar}), 7.98 (2H, d, *J* = 7.9 Hz, *CH*_{ar}), 7.37 (6H, d, *J* = 7.9 Hz, *m*-CH_{ar}), 7.21 (2H, d, *J* = 7.8 Hz, *CH*_{ar}), 7.18 (2H, t, *J* = 7.7 Hz, *CH*_{ar}), 7.14 (2H, d, *J* = 7.8 Hz, *CH*_{ar}), 7.08 (2H, t, *J* = 7.4 Hz, *CH*_{ar}), 2.37 (9H, s, CH₃), 2.23 (6H, s, *CH*₃); ¹³C{¹H} (100 MHz, CDCl₃, 25 °C): δ = 174.3 (COO), 157.7 (BiC), 147.6 (*i*-C_{ar}), 147.6 (*i*-C_{ar}), 141.6 (*i*-C_{ar}), 141.3 (*i*-C_{ar}), 135.5 (*i*-C_{ar}), 133.9 (CH_{ar}), 133.8 (CH_{ar}), 133.0 (CH_{ar}), 132.3 (CH_{ar}), 131.9 (CH_{ar}), 130.7 (*i*-C_{ar}), 126.7 (CH_{ar}), 124.6 (CH_{ar}), 121.8 (CH_{ar}), 116.9 (CH_{ar}), 115.6 (CCOO), 113.5 (CH_{ar}), 21.5 (CH₃), 150 (CH₃); MS 209.0 [Bi], 742.2 [Bi(p-Tol)₃L]⁺; ESI- 260.1 [L]⁻; IR 3234(w), 1614 (sh), 1582 (sh), 1555 (sh), 1509 (m), 1458 (m), 1419 (w), 1359 (s), 1318 (w), 1267 (s), 1205 (s), 1183 (w), 1150 (m), 1041 (s), 1011 (sh), 997 (sh), 909 (sh), 848 (sh), 793 (sh), 768 (sh), 744 (sh), 698 (sh), 669 (sh); Elemental analysis [C₄₉H₄₅BiCl₂N₂O₄.(C₂H₅)₂O] (1077.90) Calculated C 59.06 H 4.96 N 2.60 Found C 58.76 H 4.47 N 2.67.

2. ¹H NMR Spectra of Complexes 1 – 3, 5 – 11, 13 – 29

Figure S2 ¹H NMR of tri-*o*-tolylbismuth bis(4-nitrobenzoate), **2** in (CD₃)₂SO at 25 °C, 400 MHz.

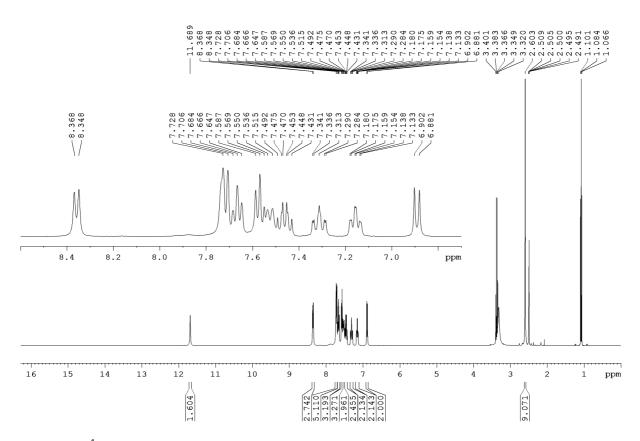
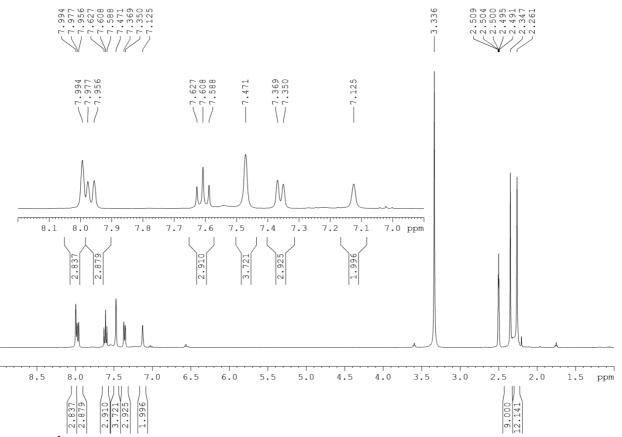
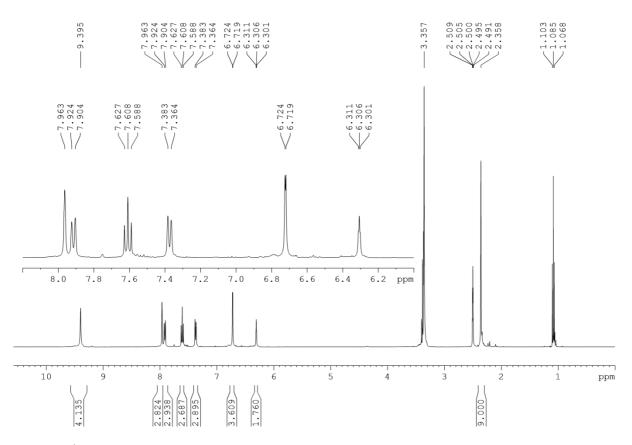




Figure S3 ¹H NMR of tri-*o*-tolylbismuth bis(2',4'-difluoro-4-hydroxybiphenyl-3-carboxylate), 3 in $(CD_3)_2SO$ at 25 °C, 400 MHz.

Figure S4 ¹H NMR of tri-*m*-tolylbismuth bis(3,5-dimethylbenzoate), **5** in (CD₃)₂SO at 25 °C, 400 MHz.

Figure S5 ¹H NMR of tri-*m*-tolylbismuth bis(3,5-dihydroxybenzoate), **6** in (CD₃)₂SO at 25 °C, 400 MHz.

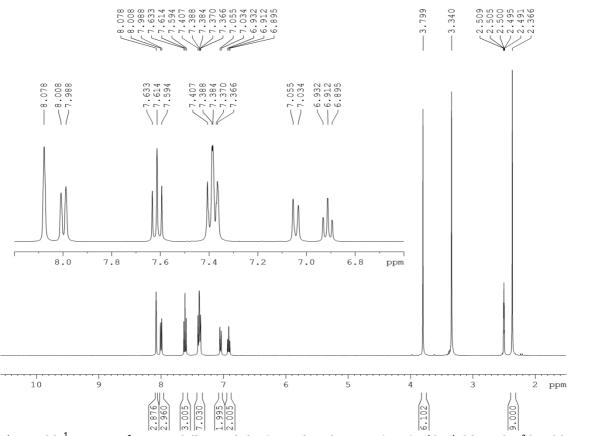


Figure S6 ¹H NMR of tri-*m*-tolylbismuth bis(2-methoxybenzoate), 7 in $(CD_3)_2SO$ at 25 °C, 400 MHz.

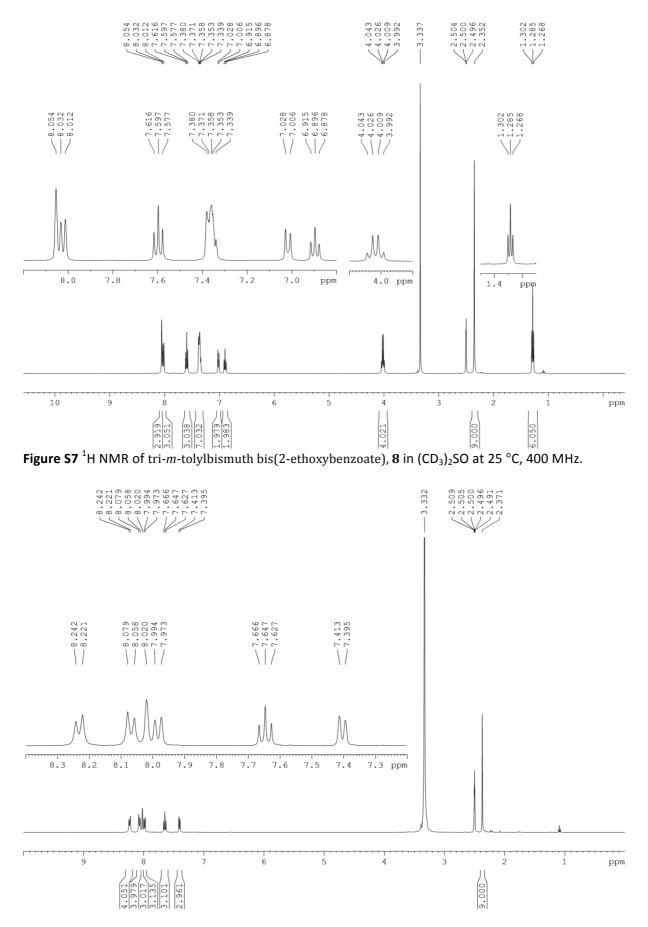
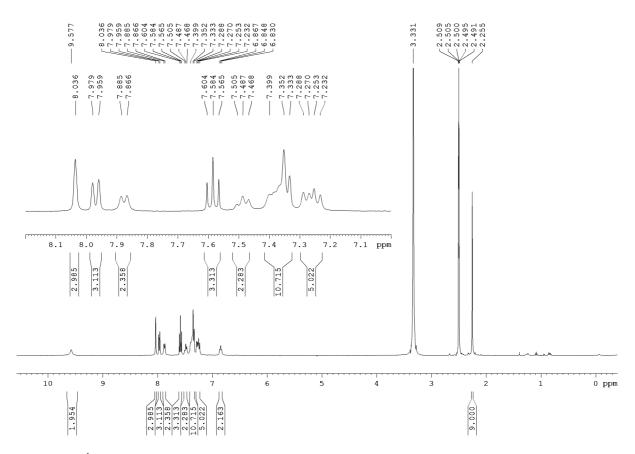
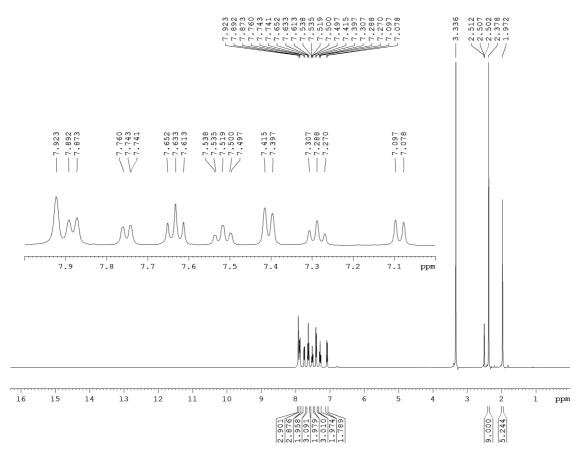




Figure S8 ¹H NMR of tri-*m*-tolyl-bismuth bis(4-nitrobenzoate), 9 in (CD₃)₂SO at 25 °C, 400 MHz.

Figure S9 ¹H NMR of tri-*m*-tolylbismuth bis(2-{[3-trifluoromethyl)phenyl]amino}benzoate), **10** in $(CD_3)_2SO$ at 25 °C, 400 MHz.

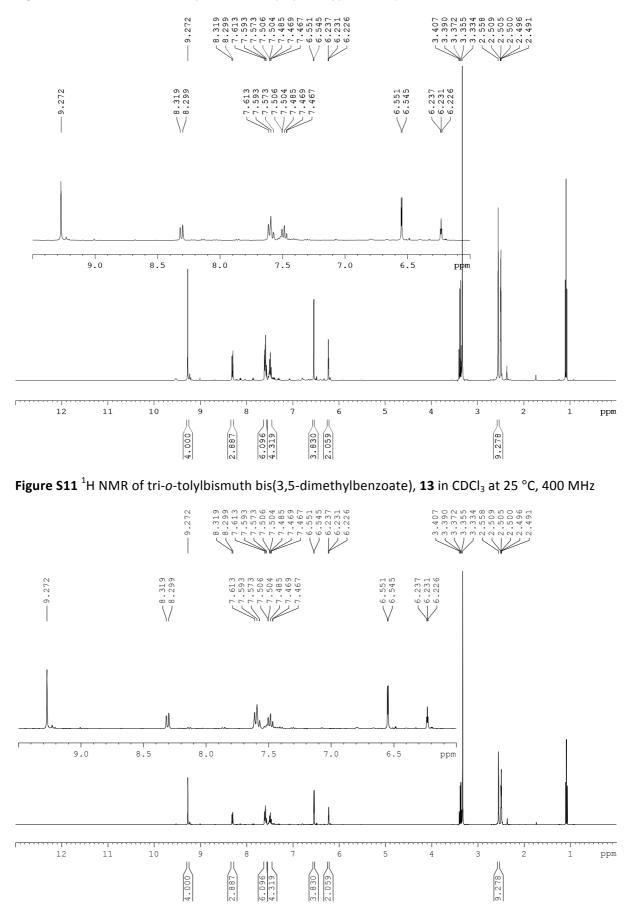


Figure S10 ¹H NMR of tri-*m*-tolylbismuth bis(2-(acetoxy)benzoate), 11 in (CD₃)₂SO at 25 °C, 400 MHz

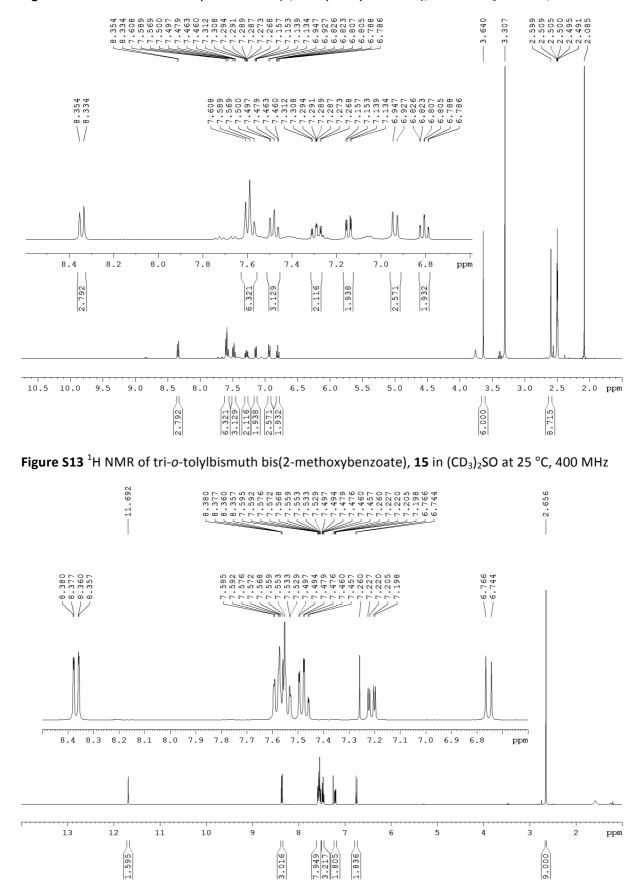
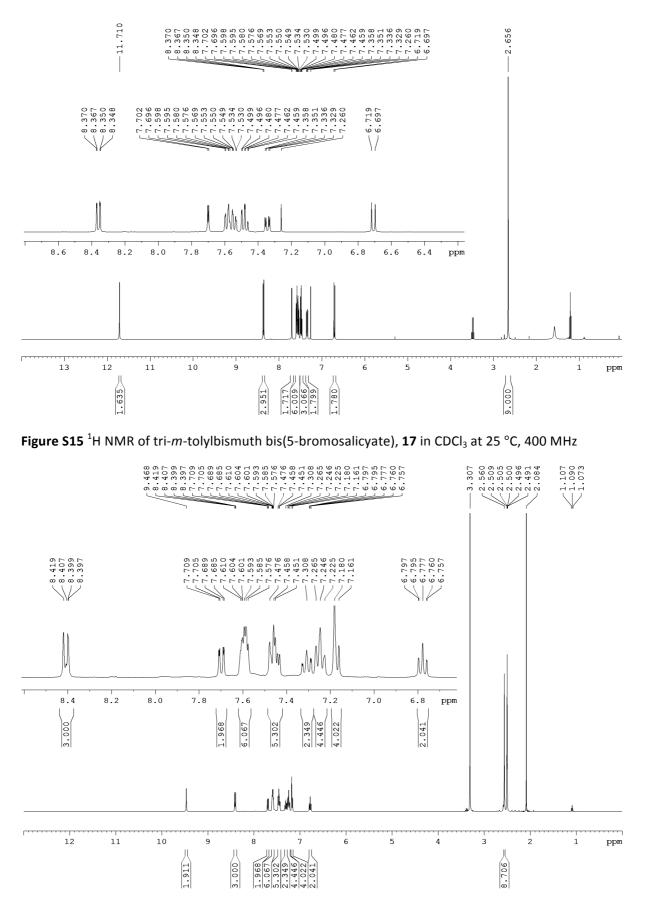
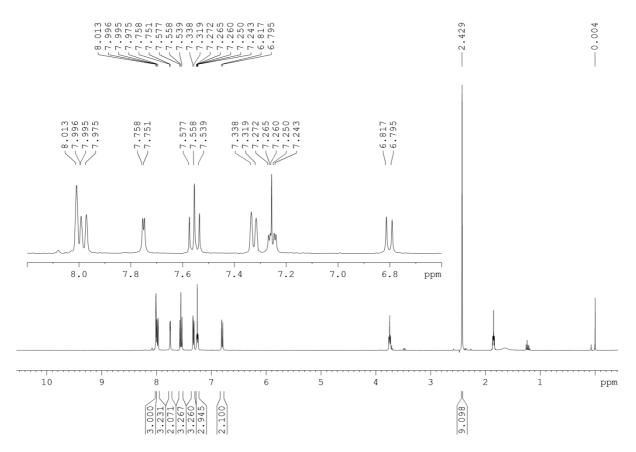
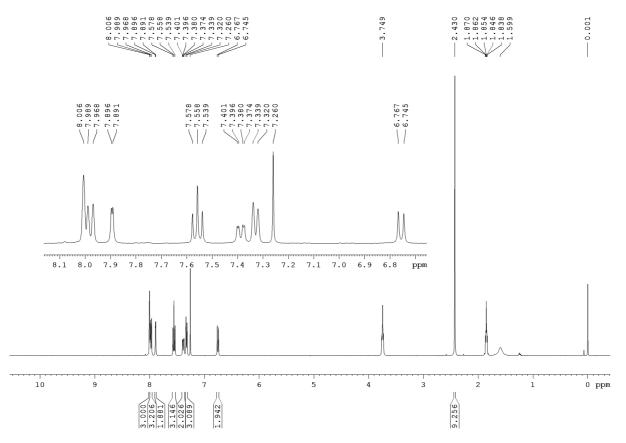
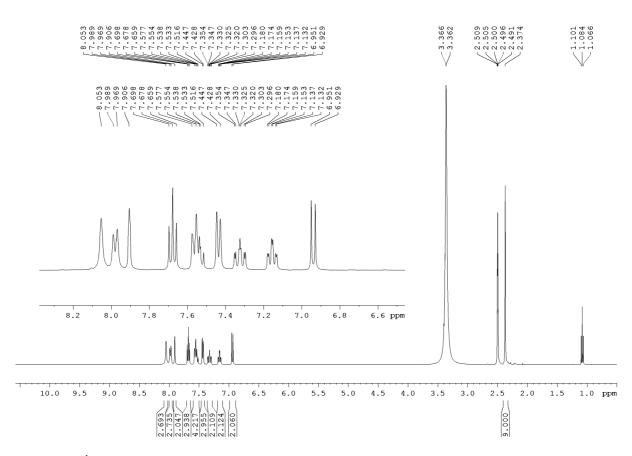
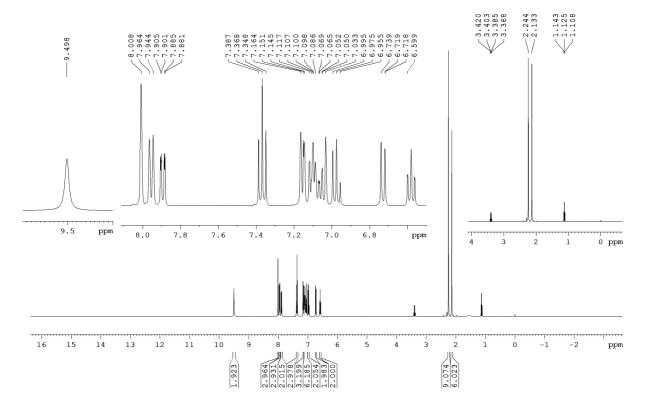
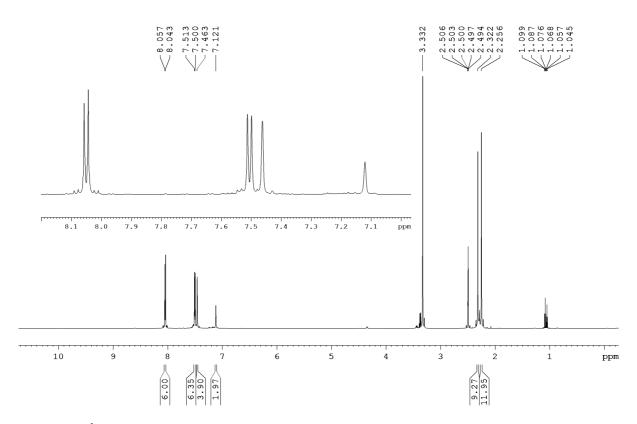




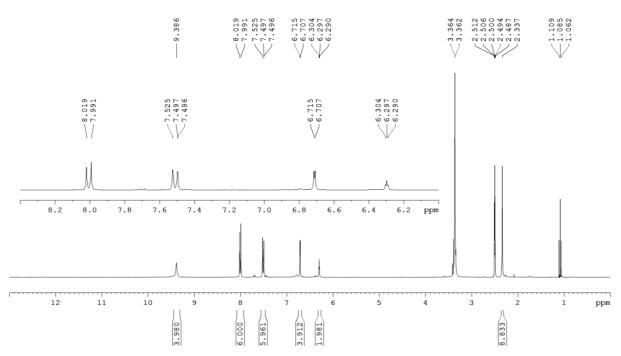
Figure S12 ¹H NMR of tri-*o*-tolylbismuth bis(3,5-dihydroxybenzoate), 14 in CDCl₃ at 25 °C, 400 MHz


Figure S14 ¹H NMR of tri-o-tolylbismuth bis(5-chlorosalicyate), 16 in CDCl3 at 25 °C, 400 MHz


Figure S16 ¹H NMR of tri-*o*-tolylbismuth bis(2-{[3-(Trifluoromethyl)phenyl]amino}benzoate), **18** in $(CD_3)_2SO$ at 25 °C, 400 MHz


Figure S17 ¹H NMR of tri-*m*-tolylbismuth bis(5-chlorosalicyate), **19** in CDCl₃ at 25 °C, 400 MHz.


Figure S18 ¹H NMR of tri-*m*-tolylbismuth bis(5-bromosalicyate), **20** in CDCl₃ at 25 °C, 400 MHz.


Figure S19 ¹H NMR of tri-*m*-tolylbismuth bis(2', 4'-difluoro-4-hydroxybiphenyl-3-carboxylate), **21** in $(CD_3)_2SO$ at 25 °C, 400 MHz.

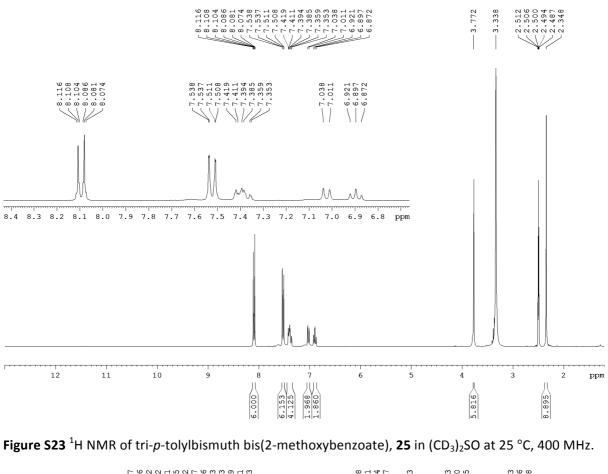

Figure S20 ¹H NMR of tri-*m*-tolylbismuth bis(2-[(3-chloro-2-methylphenyl)amino]benzoate), **22** in CDCl₃ at 25 °C, 400 MHz

Figure S21 ¹H NMR of tri-*p*-tolylbismuth bis(3,5-dimethylbenzoate), **23** in $(CD_3)_2SO$ at 25 °C, 400 MHz.

Figure S22 ¹H NMR of tri-*p*-tolylbismuth bis(3,5-dihydroxybenzoate), **24** in $(CD_3)_2SO$ at 25 °C, 400 MHz.

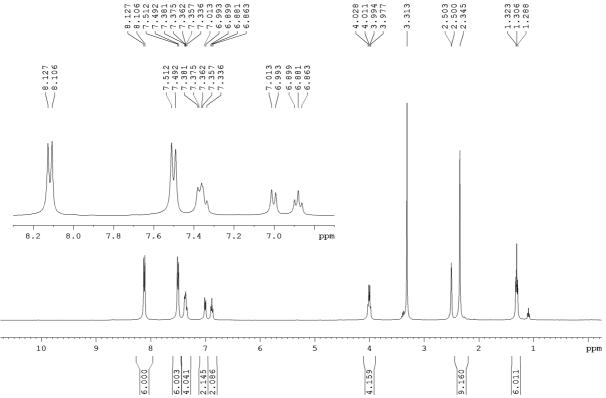


Figure S24 ¹H NMR of tri-*p*-tolylbismuth bis(2-ethoxybenzoate), 26 in (CD₃)₂SO at 25 °C, 400 MHz

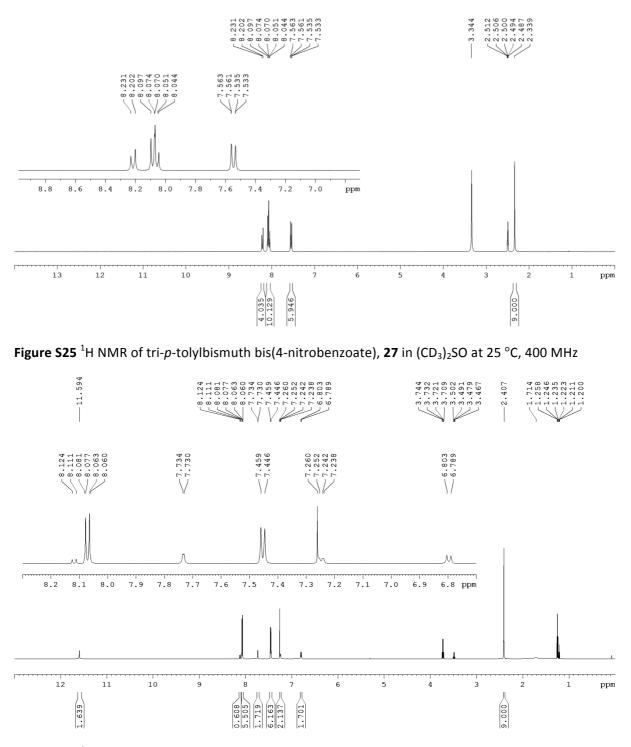
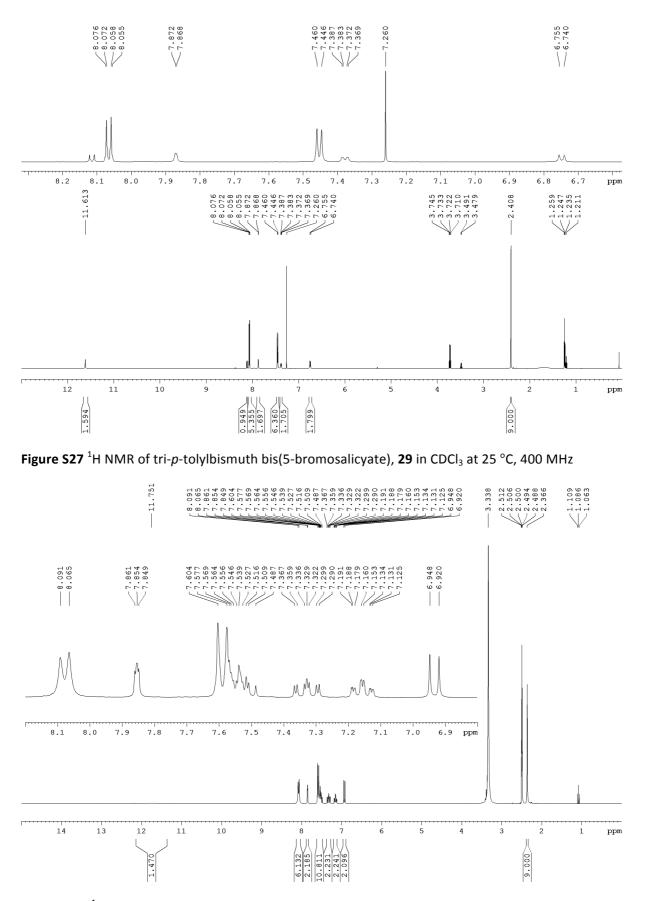



Figure S26 ¹H NMR of tri-*p*-tolylbismuth bis(5-chlorosalicyate), 28 in CDCl₃ at 25 °C, 400 MHz

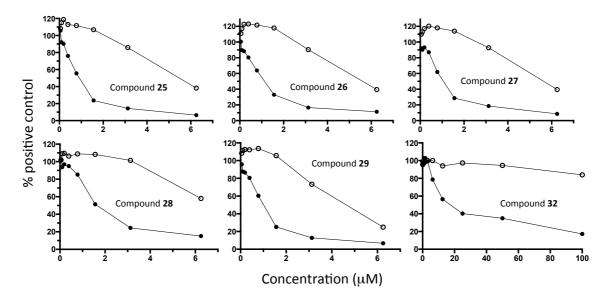
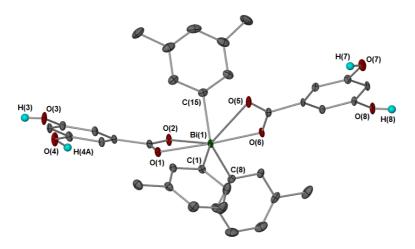


Figure S28 ¹H NMR of tri-*p*-tolylbismuth bis(2', 4'-difluoro-4-hydroxybiphenyl-3-carboxylate), **30** in $CDCl_3$ at 25 °C, 400 MHz


Figure S29 ¹H NMR of tri-*p*-tolylbismuth bis(2-[(3-chloro-2-methylphenyl)amino]benzoate), **31** in CDCl₃ at 25 °C, 400 MHz

3. Biological graphs for Compounds 25 – 29 and 32

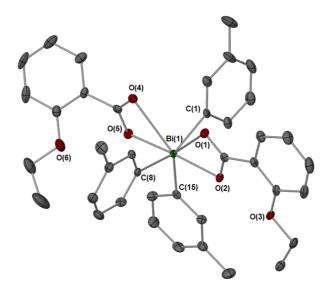
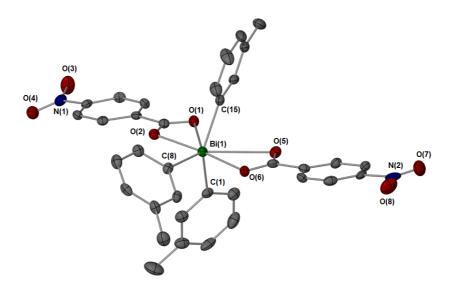
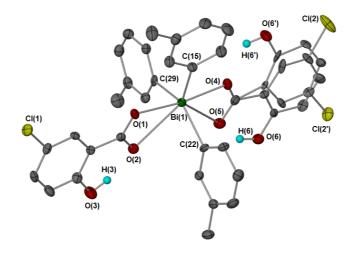
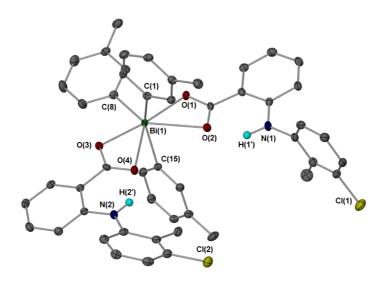
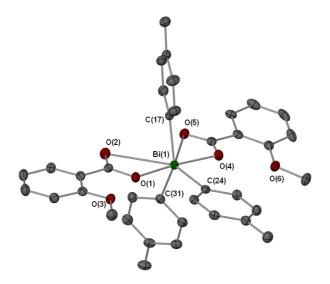


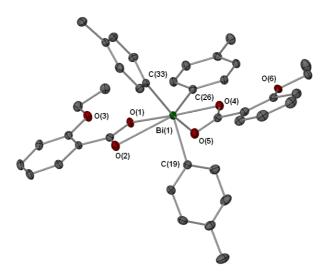
Figure S30 Activity of 25-29 and 32 on *L. major* promastigotes (•) and human fibroblasts (•) after 48 hours

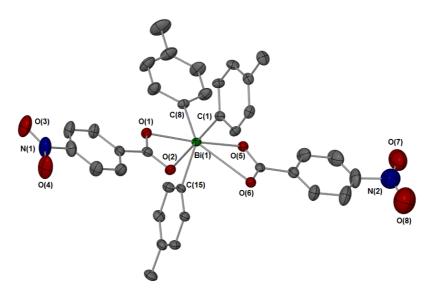

4. Solid state structures for Compounds 6, 8, 9, 19, 22, 25 – 28 and 31

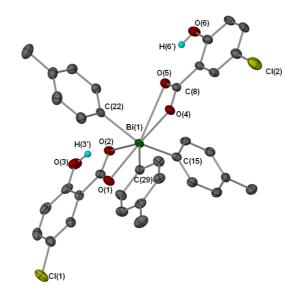

Figure S31 Molecular structure of $[Bi(m-Tol)_3(O_2CC_6H_3(2,5-OH))_2]$ **6** showing thermal ellipsoids at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): Bi(1)-C(1) 2.186(3); Bi(1)-C(8) 2.191(3); Bi(1)-C(15) 2.202(4); Bi(1)-O(6) 2.247(2); Bi(1)-O(1) 2.267(2); Bi(1)-O(2) 3.071(3); Bi(1)-O(5) 3.262(3).


Figure S32 Molecular structure of $[Bi(m-Tol)_3(O_2CC_6H_4(2-EtO))_2]$ **8** showing thermal ellipsoids at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): Bi(1)-C(1) 2.195(4); Bi(1)-C(8) 2.203(4); Bi(1)-C(15) 2.216(4); Bi(1)-O(5) 2.305(3); Bi(1)-O(2) 2.309(3); Bi(1)-O(1) 2.686(3); Bi(1)-O(4) 2.743(3).


Figure S33 Molecular structure of $[Bi(m-Tol)_3(O_2CC_6H_4(4-NO_2))_2]$ **9** showing thermal ellipsoids at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): Bi(1)-C(15) 2.182(4); Bi(1)-C(1) 2.195(4); Bi(1)-C(8) 2.205(7); Bi(1)-O(6) 2.274(4); Bi(1)-O(2) 2.287(3);Bi(1)-O(1) 2.841(2); Bi(1)-O(5) 2.899(3).


Figure S34 Molecular structure of $[Bi(m-Tol)_3(O_2CC_6H_3(2-OH,5-Cl))_2]$ **19** showing thermal ellipsoids at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): Bi(1)-C(29) 2.176(4); Bi(1)-C(22) 2.189(4); Bi(1)-C(15) 2.224(5); Bi(1)-O(4) 2.280(3); Bi(1)-O(1) 2.318(3); Bi(1)-O(2) 2.849(3); Bi(1)-O(5) 3.047(3).


Figure S35 Molecular structure of $[Bi(m-Tol)_3(O_2CC_6H_4(2-NHC_6H_3(2-Me,3-Cl))_2]$ **22** showing thermal ellipsoids at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): Bi(1)-C(15) 2.200(4); Bi(1)-C(1) 2.201(4); Bi(1)-C(8) 2.238(5); Bi(1)-O(3) 2.270(3); Bi(1)-O(1) 2.313(3); Bi(1)-O(2) 2.706(3); Bi(1)-O(4) 2.835(3).


Figure S36 Molecular structure of $[Bi(p-Tol)_3(O_2CC_6H_4(2-OMe))_2]$ **25** showing thermal ellipsoids at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): Bi(1)-C(31) 2.186(4); Bi(1)-C(17) 2.195(3); Bi(1)-C(24) 2.205(3); Bi(1)-O(1) 2.249(2); Bi(1)-O(4) 2.257(2); Bi(1)-O(5) 2.905(3); Bi(1)-O(2) 2.983(3).

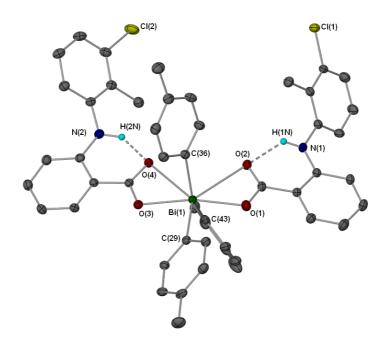

Figure S37 Molecular structure of $[Bi(p-Tol)_3(O_2CC_6H_4(2-OEt))_2]$ **26** showing thermal ellipsoids at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): Bi(1)-C(33) 2.193(3); Bi(1)-C(19) 2.195(3); Bi(1)-C(26) 2.207(3); Bi(1)-O(4) 2.276(2); Bi(1)-O(1) 2.278(2); Bi(1)-O(2) 2.820(2); Bi(1)-O(5) 2.857(2).

Figure S38 Molecular structure of $[Bi(p-Tol)_3(O_2CC_6H_4(4-NO_2))_2]$ **27** showing thermal ellipsoids at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): Bi(1)-C(15) 2.186(5); Bi(1)-C(1) 2.190(5); Bi(1)-C(8) 2.212(5); Bi(1)-O(5) 2.256(3); Bi(1)-O(1) 2.338(3); Bi(1)-O(2) 2.727(4); Bi(1)-O(6) 2.869(4).

Figure S39 Molecular structure of $[Bi(p-Tol)_3(O_2CC_6H_3(2-OH,5-Cl))_2]$ **28** showing thermal ellipsoids at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): Bi(1)-C(15) 2.174(4); Bi(1)-C(22) 2.192(4); Bi(1)-C(29) 2.204(4); Bi(1)-O(4) 2.265(3); Bi(1)-O(1) 2.289(3); Bi(1)-O(2) 2.951(4); Bi(1)-O(5), 3.001(3).

Figure S40 Molecular structure of $[Bi(p-Tol)_3(O_2CC_6H_4(2-NHC_6H_3(2-Me,3-Cl))_2]$ **31** showing thermal ellipsoids at 50% probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): Bi(1)-C(29) 2.192(3); Bi(1)-C(36) 2.193(3); Bi(1)-C(43) 2.198(3); Bi(1)-O(1) 2.281(2); Bi(1)-O(3) 2.282(2); Bi(1)-O(2) 2.816(2); Bi(1)-O(4) 2.905(2).

5. Crystallographic summary of 6, 8, 9, 19, 22, 25 – 28 and 31

Compound	6	8	9	19	22	25	26	27	28	31
Chemical formula	C ₃₉ H ₄₅ BiO ₁₁	C ₃₉ H ₃₉ BiO ₆	$C_{35}H_{29}BiN_2O_8$	$C_{35}H_{29}BiCl_2O_6$	$C_{49}H_{43}BiCl_2N_2O_4$	C ₃₇ H ₃₅ BiO ₆	$C_{39}H_{39}BiO_6$	$C_{39}H_{37}BiN_2O_9$	$C_{35}H_{29}BiCl_2O_6$	$C_{49}H_{43}BiCl_2N_2O_4$
Formula Mass	898.73	812.68	814.58	825.46	35459	784.63	812.68	886.69	825.46	1003.73
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Triclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic	Orthorhombic
a/Å	15.636(3)	9.1878(4)	17.8158(13)	9.0562(4)	9.0480(18)	10.960(2)	10.949(2)	10.5176(3)	9.1030(18)	20.797(4)
b/Å	15.607(3)	18.7150(10)	14.7358(6)	11.5012(5)	11.217(2)	15.975(3)	15.980(3)	27.1933(8)	10.781(2)	15.314(3)
c/Å	30.709(6)	19.9856(10)	15.0730(10)	16.2432(7)	20.912(4)	17.886(4)	18.978(4)	14.2016(5)	18.399(4)	26.182(5)
α/°	90	90	90	107.263(4)	101.82(3)	90	90	90	98.62(3)	90
в/°	90	90	125.227(10)	90.519(4)	90.76(3)	91.79(3)	93.65(3)	102.235(2)	96.46(3)	90
γ/°	90	90	90	99.342(4)	90.17(3)	90	90	90	113.48(3)	90
V/Å ³	7494(3)	3436.5(3)	3232.5(3)	1591.26(12)	2077.2(7)	3130.1(11)	3313.7(12)	3969.5(2)	1607.7(6)	8339(3)
Space group	Pbca	P2 ₁ 2 ₁ 2 ₁	С2	P-1	P-1	P21/c	P-1	P2 ₁ /c	P-1	Pbca
Ζ	8	4	4	2	2	4	4	4	2	8
Reflections	123455	20817	15330	24451	35459	58996	61780	27244	30394	184688
collected										
Ind. refins	8933	10969	7286	7585	9060	7976	9449	9783	7821	14783
R _{int}	0.0617	0.0421	0.0342	0.0637	0.0411	0.0476	0.0451	0.0411	0.0405	0.0917
Final R ₁ values ^a	0.0331	0.0373	0.0281	0.0400	0.0398	0.0353	0.0316	0.0418	0.0350	0.0402
Final wR(F ²) values ^a	0.0846	0.0639	0.0417	0.0672	0.1003	0.0891	0.0853	0.0961	0.0905	0.1085
Final R ₁ values ^b	0.0353	0.0482	0.0356	0.0625	0.0443	0.0433	0.0348	0.0606	0.0367	0.0470
Final wR(F ²) values ^b	0.0858	0.0685	0.0444	0.0769	0.1027	0.0943	0.0876	0.1029	0.0920	0.1131
GoF	1.150	1.023	0.910	1.037	1.091	1.038	0.966	1.061	1.082	1.041
Temperature (K)	173(2)	123(2)	<mark>123(2)</mark>	<mark>123(2)</mark>	173(2)	<mark>173(2)</mark>	173(2)	123(2)	<mark>173(2)</mark>	<mark>100(2)</mark>

Table S1 Summary of crystallographic data for Compound 6, 8, 9, 19, 22, 25 – 28, 31 (${}^{a}l > 2\sigma(l)$); b all data).