Supporting information

An intense NIR emission from Ca$_{14}$Al$_{10}$Zn$_6$O$_{35}$:Mn$^{4+}$,Yb$^{3+}$ via energy transfer for solar spectral convertor

Wei Lüa,*, Mengmeng Jiaoa,b, Baiqi Shaoa,b, Lingfei Zhaoa,b, Yang Fenga,b and Hongpeng Youa,*

aState key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

bUniversity of the Chinese Academy of Sciences, Beijing 100049, P. R. China.
Experimental Section

Synthesis. The Ca$_{14-x}$Al$_{9.85}$Zn$_6$O$_{35}$ (CAZO) : 0.15Mn$^{4+}$, xYb$^{3+}$ (abbreviated as CAZO: Mn$^{4+}$, xYb$^{3+}$; Mn$^{2+}$ substitutes for Al$^{3+}$, Yb$^{3+}$ substitutes for Ca$^{2+}$, where the x is mole percent) phosphors were synthesized by a high-temperature solid-state reaction. The constituent oxides or carbonates CaCO$_3$ (A. R.), ZnO (A. R.), Al$_2$O$_3$ (A. R.), MnCO$_3$ (A. R.) and Yb$_2$O$_3$ (99.99%) were employed as the raw materials, which were mixed homogeneously by an agate mortar for 30 minutes, placed in a crucible with a lid, and then sintered in a tubular furnace at 1220°C for 4 h in air.

Characterization. The phase purity of all samples were identified by powder X-ray diffraction (XRD) analysis (Bruker AXS D8), with graphite monochromatized Cu Kα radiation ($\lambda = 0.15405$ nm) operating at 40 kV and 40 mA. The morphology and size of the as-prepared samples were inspected with a field emission scanning electron microscope equipped with an energy-dispersive spectrometer (EDS) (FE-SEM, S-4800, Hitachi, Japan). High-resolution transmission electron microscopic (HRTEM) images were recorded with a FEI Tecnai G2 S-Twin with a field-emission gun operating at 200 kV and a Gatan multipe multiple CCD camera. Room-temperature photoluminescence (PL) spectra were measured on a Hitachi F-7000 luminescence spectrophotometer equipped with a 150 W xenon lamp as the excitation source. Absolute photoluminescence quantum yields (QYs) were measured by the absolute PL quantum yield measurement system (C9920-02, Hamamatsu Photonics K. K., Japan). The luminescence decay curves were obtained from a Lecroy Wave Runner 6100 digital oscilloscope (1GHz) using a tunable laser (pulse width = 4 ns, gate = 50 ns) as the excitation source (Continuum Sunlite OPO).
Figure S1. Absolute quantum yields of the Ca$_{14}$Al$_{10}$Zn$_6$O$_{35}$:Mn$^{4+}$ excited with different wavelength.
Figure S2. PL spectra of CAZO:Mn$^{4+},x$Yb$^{3+}$ phosphors with different Yb$^{3+}$ concentrations under the excitation at 460 nm.