Electronic Supplementary Information (ESI)

Induced Phosphorescence from $Pt \rightarrow Ag$ and $Ag(I) \cdots Ag(I)$ Metallophilic Interactions in Benzenedithiolatodiimine-Pt2 /Ag2 cluster: A Combined Experimental and Theoretical Investigation

Jamal Moussa, ^{a,b,*} Lise Marie Chamoreau, ^{a,b} Maria Pia Gullo,^c Alessandra Degli Esposti, ^c

Andrea Barbieri,^{c,*} and Hani Amouri^{a,b,*}

Table of Contents

Figure S1. Absorption spectra of 2 in CH ₃ OH (blue line) and CH ₃ CN (red line) solution at room temperature	S1
Figure S2. Comparison between the normalized absorbance spectra in MeOH (full blue line) and ACN (full red lin	ne) solution
at room temperature and the excitation spectra of 2 in MeOH:EtOH (1:4) mixture at 77 K (dashed lines) ta	ken at two
different emission wavelengths, indicated in figure	S1
Figure S3. Ground state MOs of I and II	S2
Table S1. Crystallographic data for complex 2	S3
Table S2. $S_0 \rightarrow S_n$ transitions (up to n = 32) of I in acetonitrile	S4
Table S3. $S_0 \rightarrow S_n$ transitions (up to n = 32) of II in acetonitrile	S5
Table S4. $S_0 \rightarrow S_n$ transitions (up to n = 24) of I <i>in vacuo</i>	S6
Table S5. $S_0 \rightarrow S_n$ transitions (up to n = 24) of II <i>in vacuo</i>	S7
Table S6. Significant estimated strengths of the Ag-Ag donor-acceptor interactions	S8
Program References	S9

^{a.} Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232, 4 place Jussieu, 75252 Paris cedex 05, France. E-mail: jamal.moussa@upmc.fr

^{b.} CNRS, Centre National de la Recherche Scientifique, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232, 4 place Jussieu, 75252 Paris cedex 05, France. E-mail: hani.amouri@upmc.fr

^c Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129 Bologna, Italy. E-mail: andrea.barbieri@isof.cnr.it

Figure S1. Absorption spectra of 2 in CH₃OH (blue line) and CH₃CN (red line) solution at room temperature.

Figure S2. Comparison between the normalized absorbance spectra in MeOH (full blue line) and ACN (full red line) solution at room temperature and the excitation spectra of **2** in MeOH:EtOH (1:4) mixture at 77 K (dashed lines) taken at two different emission wavelengths, indicated in figure.

Figure S3. Comparison among the three high occupied and three low virtual MOs of I and II in their ground state calculated in acetonitrile solution. Those of Pt(*o*-bdt)(bpy) are also reported.

Table S1. Crystallographic data for [(Pt2Ag2(o-bdt)₂(bpy)₂][CF₃SO₃]₂·0.33 H₂O·0.67 CH₃CN

Formula weight 1526.22 g/mol Temperature 200(2) K Wavelength 0.71073 Å Crystal system triclinic Space group P-1 Unit cell dimensions a = 13.508(4) Å b = 15.370(4) Å c = 16.789(4)Å c = 16.789(4)Å a = 80.705(10)° β = 79.560(11)° γ = 89.233(11)° Volume 3382.7(16) Å ³ Z 3 Density (calculated) 2.248 Mg/m ³ Absorption coefficient 7.391 mm ⁻¹ F(000) 2160 Reflections collected 47069 Independent reflections 15241 [R(int) = 0.0210] Final R indices [I>2sigma(I)] R1 = 0.0533, wR2 = 0.1217 Final R indices [all data] R1 = 0.0707, wR2 = 0.1362 Goodness-of-fit on F2 1.060 Largest diff. peak and hole (e.Å ⁻³) 5.610 and -2.24	Empirical formula	$C_{35H_{26.67}Ag_2F_6N_{4.67}O_{6.33}Pt_2S_6}$
Temperature $200(2)$ KWavelength 0.71073 ÅCrystal systemtriclinicSpace groupP -1Unit cell dimensionsa = 13.508(4) Åb = 15.370(4) Åc = 16.789(4)Åc = 16.789(4)Åa = 80.705(10)° β = 79.560(11)° γ = 89.233(11)°Volume3382.7(16) ųZ3Density (calculated)2.248 Mg/m³Absorption coefficient7.391 mm ⁻¹ F(000)2160Reflections collected47069Independent reflections15241 [R(int) = 0.0210]Final R indices [I>2sigma(I)]R1 = 0.0707, wR2 = 0.1217Final R indices [all data]R1 = 0.0707, wR2 = 0.1362Goodness-of-fit on F21.060Largest diff. peak and hole (e.Å-³)5.610 and -2.24	Formula weight	1526.22 g/mol
Wavelength 0.71073 ÅCrystal systemtriclinicSpace groupP -1Unit cell dimensionsa = 13.508(4) Åb = 15.370(4) Åb = 15.370(4) Åc = 16.789(4)Åc = 16.789(4)Åa = 80.705(10)° β = 79.560(11)° γ = 89.233(11)°3382.7(16) ųZ3Density (calculated)2.248 Mg/m³Absorption coefficient7.391 mm¹1F(000)2160Reflections collected47069Independent reflections15241 [R(int) = 0.0210]Final R indices [1>2sigma(1)]R1 = 0.0533, wR2 = 0.1217Final R indices [all data]R1 = 0.0707, wR2 = 0.1362Goodness-of-fit on F21.060Largest diff. peak and hole (e.Å-³)5.610 and -2.24	Temperature	200(2) К
Crystal system triclinic Space group P -1 Unit cell dimensions a = 13.508(4) Å b = 15.370(4) Å c = 16.789(4)Å c = 16.789(4)Å a = 80.705(10)° α = 80.705(10)° β = 79.560(11)° γ = 89.233(11)° y = 89.233(11)° Volume 3382.7(16) ų Z 3 Density (calculated) 2.248 Mg/m³ Absorption coefficient 7.391 mm ⁻¹ F(000) 2160 Reflections collected 47069 Independent reflections 15241 [R(int) = 0.0210] Final R indices [l>2sigma(l)] R1 = 0.0533, wR2 = 0.1217 Final R indices [all data] R1 = 0.0707, wR2 = 0.1362 Goodness-of-fit on F2 1.060 Largest diff. peak and hole (e.Å ⁻³) 5.610 and -2.24	Wavelength	0.71073 Å
Space group P-1 Unit cell dimensions a = 13.508(4) Å b = 15.370(4) Å c = 16.789(4)Å c = 16.789(4)Å a = 80.705(10)° α = 80.705(10)° β = 79.560(11)° γ = 89.233(11)° 3382.7(16) ų Z 3 Density (calculated) 2.248 Mg/m³ Absorption coefficient 7.391 mm ⁻¹ F(000) 2160 Reflections collected 47069 Independent reflections 15241 [R(int) = 0.0210] Final R indices [I>2sigma(I)] R1 = 0.0533, wR2 = 0.1217 Final R indices [all data] R1 = 0.0707, wR2 = 0.1362 Goodness-of-fit on F2 1.060 Largest diff. peak and hole (e.Å ⁻³) 5.610 and -2.24	Crystal system	triclinic
Unit cell dimensionsa = 13.508(4) Åb = 15.370(4) Åc = 16.789(4)Åc = 16.789(4)Å α = 80.705(10)° β = 79.560(11)° γ = 89.233(11)°Volume3382.7(16) ųZ3Density (calculated)2.248 Mg/m³Absorption coefficient7.391 mm ⁻¹ F(000)2160Reflections collected47069Independent reflections15241 [R(int) = 0.0210]Final R indices [I>2sigma(I)]R1 = 0.0533, wR2 = 0.1217Final R indices [all data]R1 = 0.0707, wR2 = 0.1362Goodness-of-fit on F21.060Largest diff. peak and hole (e.Å ⁻³)5.610 and -2.24	Space group	P -1
$ \begin{array}{ll} b = 15.370(4) \ \text{\AA} \\ c = 16.789(4) \ \text{\AA} \\ \alpha = 80.705(10)^{\circ} \\ \beta = 79.560(11)^{\circ} \\ \gamma = 89.233(11)^{\circ} \\ 3382.7(16) \ \text{\AA}^3 \\ \hline Z & 3 \\ \hline Z & 3 \\ \hline Density (calculated) & 2.248 \ \text{Mg/m}^3 \\ \hline Absorption coefficient & 7.391 \ \text{mm}^{-1} \\ F(000) & 2160 \\ \hline Reflections collected & 47069 \\ \hline Independent reflections & 15241 \ [R(int) = 0.0210] \\ \hline Final \ R indices \ [l>2sigma(l)] & R1 = 0.0533, \ \text{wR2} = 0.1217 \\ \hline Final \ R indices \ [all \ data] & R1 = 0.0707, \ \text{wR2} = 0.1362 \\ \hline Goodness-of-fit \ On \ F2 & 1.060 \\ \hline Largest \ diff. \ peak \ and \ hole \ (e. \ \text{\AA}^{-3}) & 5.610 \ and -2.24 \\ \end{array} $	Unit cell dimensions	a = 13.508(4) Å
$\begin{array}{c} c = 16.789(4) \mathring{A} \\ \alpha = 80.705(10)^{\circ} \\ \beta = 79.560(11)^{\circ} \\ \gamma = 89.233(11)^{\circ} \\ \gamma = 89.233(11)^{\circ} \\ 3382.7(16) \mathring{A}^{3} \\ z \\ 3 \\ Density (calculated) \\ Absorption coefficient \\ 7.391 mm^{-1} \\ F(000) \\ 2160 \\ Reflections collected \\ 47069 \\ Independent reflections \\ 15241 [R(int) = 0.0210] \\ Final R indices [I>2sigma(I)] \\ Final R indices [all data] \\ Goodness-of-fit on F2 \\ Largest diff. peak and hole (e.\mathring{A}^{-3}) \\ \end{array}$		b = 15.370(4) Å
$\begin{array}{c} \alpha = 80.705(10)^{\circ} \\ \beta = 79.560(11)^{\circ} \\ \gamma = 89.233(11)^{\circ} \\ \gamma = 89.233(11)^{\circ} \\ 3382.7(16) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		c = 16.789(4)Å
$\begin{array}{c} & & & & & & & & & & & & & \\ & & & & & $		$\alpha = 80.705(10)^{\circ}$
$\begin{array}{c} & \qquad $		$\beta = 79.560(11)^{\circ}$
Volume $3382.7(16)$ ųZ3Density (calculated) 2.248 Mg/m³Absorption coefficient 7.391 mm ⁻¹ F(000)2160Reflections collected47069Independent reflections15241 [R(int) = 0.0210]Final R indices [I>2sigma(I)]R1 = 0.0533, wR2 = 0.1217Final R indices [all data]R1 = 0.0707, wR2 = 0.1362Goodness-of-fit on F21.060Largest diff. peak and hole (e.Å-³)5.610 and -2.24		γ = 89.233(11)°
Z3Density (calculated) 2.248 Mg/m^3 Absorption coefficient 7.391 mm^{-1} F(000) 2160 Reflections collected 47069 Independent reflections $15241 [R(int) = 0.0210]$ Final R indices [I>2sigma(I)]R1 = 0.0533, wR2 = 0.1217Final R indices [all data]R1 = 0.0707, wR2 = 0.1362Goodness-of-fit on F2 1.060 Largest diff. peak and hole (e.Å-3) $5.610 \text{ and } -2.24$	Volume	3382.7(16) Å ³
Density (calculated) 2.248 Mg/m^3 Absorption coefficient 7.391 mm^{-1} $F(000)$ 2160 Reflections collected 47069 Independent reflections $15241 [R(int) = 0.0210]$ Final R indices [I>2sigma(I)] $R1 = 0.0533$, wR2 = 0.1217Final R indices [all data] $R1 = 0.0707$, wR2 = 0.1362Goodness-of-fit on F2 1.060 Largest diff. peak and hole (e.Å-3) $5.610 \text{ and } -2.24$	Z	3
Absorption coefficient 7.391 mm^{-1} F(000) 2160 Reflections collected 47069 Independent reflections 15241 [R(int) = 0.0210] Final R indices [I>2sigma(I)] R1 = 0.0533, wR2 = 0.1217 Final R indices [all data] R1 = 0.0707, wR2 = 0.1362 Goodness-of-fit on F2 1.060 Largest diff. peak and hole (e.Å ⁻³) 5.610 and -2.24	Density (calculated)	2.248 Mg/m ³
F(000) 2160 Reflections collected 47069 Independent reflections 15241 [R(int) = 0.0210] Final R indices [I>2sigma(I)] R1 = 0.0533, wR2 = 0.1217 Final R indices [all data] R1 = 0.0707, wR2 = 0.1362 Goodness-of-fit on F2 1.060 Largest diff. peak and hole (e.Å ⁻³) 5.610 and -2.24	Absorption coefficient	7.391 mm ⁻¹
Reflections collected 47069 Independent reflections $15241 [R(int) = 0.0210]$ Final R indices [I>2sigma(I)] R1 = 0.0533, wR2 = 0.1217 Final R indices [all data] R1 = 0.0707, wR2 = 0.1362 Goodness-of-fit on F2 1.060 Largest diff. peak and hole (e.Å ⁻³) 5.610 and -2.24	F(000)	2160
Independent reflections 15241 [R(int) = 0.0210] Final R indices [I>2sigma(I)] R1 = 0.0533, wR2 = 0.1217 Final R indices [all data] R1 = 0.0707, wR2 = 0.1362 Goodness-of-fit on F2 1.060 Largest diff. peak and hole (e.Å-3) 5.610 and -2.24	Reflections collected	47069
Final R indices [I>2sigma(I)] R1 = 0.0533, wR2 = 0.1217 Final R indices [all data] R1 = 0.0707, wR2 = 0.1362 Goodness-of-fit on F2 1.060 Largest diff. peak and hole (e.Å-3) 5.610 and -2.24	Independent reflections	15241 [R(int) = 0.0210]
Final R indices [all data] R1 = 0.0707, wR2 = 0.1362 Goodness-of-fit on F2 1.060 Largest diff. peak and hole (e.Å ⁻³) 5.610 and -2.24	Final R indices [I>2sigma(I)]	R1 = 0.0533, wR2 = 0.1217
Goodness-of-fit on F21.060Largest diff. peak and hole (e.Å-3)5.610 and -2.24	Final R indices [all data]	R1 = 0.0707, wR2 = 0.1362
Largest diff. peak and hole (e.Å-3)5.610 and -2.24	Goodness-of-fit on F2	1.060
	Largest diff. peak and hole (e.Å ⁻³)	5.610 and -2.24

n	ΔΕ / λ	f_{osc}	excita	ations
1	2.53 / 490	0.0014	+0.69 $h_0 \rightarrow I_0$	
2	2.59 / 478	0.0036	+0.65 $h_1 \rightarrow I_0$	+0.22 $h_2 \rightarrow l_0$
3	2.66 / 466	0.1147	+0.64 $h_2 \rightarrow I_0$	$-0.23 h_1 \rightarrow l_0$
4	2.80 / 443	0.0061	+0.62 $h_3 \rightarrow I_0$	$-0.26 h_1 \rightarrow l_1$
5	2.95 / 420	0.0423	+0.58 $h_0 \rightarrow I_1$	$-0.25 h_2 \rightarrow l_2$
6	3.00 / 413	0.0142	+0.44 $h_4 \rightarrow I_0$	+0.37 $h_2 \rightarrow l_2$
7	3.08 / 402	0.0011	+0.61 $h_1 \rightarrow l_1$	+0.28 $h_3 \rightarrow l_0$
8	3.14 / 395	0.0007	+0.52 $h_2 \rightarrow l_1$	$-0.43 h_4 \rightarrow l_0$
9	3.26 / 380	0.0003	+0.63 $h_3 \rightarrow l_1$	+0.13 $h_4 \rightarrow l_0$
10	3.27 / 379	0.0004	+0.36 $h_0 \rightarrow I_5$	+0.29 $h_0 \rightarrow l_2$
11	3.35 / 370	0.0008	+0.34 $h_2 \rightarrow l_6$	+0.29 $h_0 \rightarrow l_0$
12	3.42 / 362	0.0091	+0.30 $h_1 \rightarrow I_3$	+0.25 $h_1 \rightarrow l_2$
13	3.44 / 360	0.0032	+0.61 $h_4 \rightarrow l_1$	$-0.14 h_7 \rightarrow l_0$
14	3.45 / 359	0.0019	+0.32 $h_1 \rightarrow l_6$	$-0.30 h_0 \rightarrow l_2$
15	3.46 / 358	0.0004	+0.61 $h_0 \rightarrow l_2$	+0.14 $h_3 \rightarrow l_3$
16	3.57 / 347	0.0037	+0.50 $h_1 \rightarrow l_2$	$-0.45 h_2 \rightarrow l_2$
17	3.57 / 346	0.0039	+0.50 $h_2 \rightarrow l_2$	+0.45 $h_1 \rightarrow l_2$
18	3.68 / 336	0.0007	+0.43 $h_0 \rightarrow I_3$	+0.25 $h_4 \rightarrow l_2$
19	3.74 / 331	0.0061	+0.48 $h_3 \rightarrow l_2$	$-0.29 h_5 \rightarrow l_0$
20	3.77 / 328	0.0085	+0.30 $h \rightarrow l_5$	+0.23 $h_2 \rightarrow l_2$
21	3.81 / 325	0.0011	+0.25 $h_4 \rightarrow l_6$	+0.25 $h_0 \rightarrow I$
22	3.84 / 323	0.0091	+0.37 $h_2 \rightarrow I_3$	$-0.36 h_3 \rightarrow l_2$
23	3.88 / 319	0.0010	+0.34 $h_2 \rightarrow I_3$	+0.28 $h_3 \rightarrow l_2$
24	3.89 / 318	0.0299	+0.49 $h_1 \rightarrow l_3$	+0.21 $h_7 \rightarrow l_2$
25	3.95 / 314	0.0521	+0.37 $h_6 \rightarrow l_0$	+0.32 $h_7 \rightarrow l_2$
26	3.98 / 311	0.0272	+0.34 $h_6 \rightarrow l_0$	+0.33 $h_1 \rightarrow l_2$
27	3.98 / 311	0.0175	$-0.38 h_1 \rightarrow l_8$	+0.27 $h_6 \rightarrow l_6$
28	4.00 / 309	0.0744	+0.47 $h_0 \rightarrow l_8$	+0.34 $h_1 \rightarrow l_2$
29	4.03 / 307	0.0008	+0.46 $h_8 \rightarrow I_0$	$-0.30 h_9 \rightarrow l_0$
30	4.05 / 306	0.0279	$-0.53 h_4 \rightarrow l_2$	$-0.21 h_2 \rightarrow l_2$
31	4.07 / 304	0.0100	$-0.37 h_0 \rightarrow l_4$	+0.24 $h_3 \rightarrow l_3$
32	4.08 / 304	0.0122	$-0.54 h_2 \rightarrow l_8$	+0.28 $h_0 \rightarrow l_0$

Table S2. $S_0 \rightarrow S_n$ transitions of I in CH₃CN. ΔE (eV), wavelength λ (nm), oscillator strengths (f_{osc}) and the two most significant excitations of each transition are reported: $h_n = HOMO - n$ and $I_n = LUMO + n$.

n	ΔΕ/λ	f_{osc}	excita	ations
1	2.81 / 440	0.0000	+0.61 $h_0 \rightarrow l_1$	$-0.32 h_1 \rightarrow l_0$
2	2.82 / 439	0.1374	+0.61 $h_0 \rightarrow l_0$	$-0.33 h_1 \rightarrow l_1$
3	2.86 / 433	0.0000	+0.52 $h_1 \rightarrow l_0$	$-0.39 h_2 \rightarrow l_0$
4	2.86 / 433	0.0013	+0.52 $h_1 \rightarrow l_1$	$-0.39 h_2 \rightarrow l_1$
5	2.94 / 421	0.0000	+0.56 $h_2 \rightarrow I_0$	+0.33 $h_1 \rightarrow I_0$
6	2.94 / 421	0.0150	+0.57 $h_2 \rightarrow l_1$	+0.33 $h_1 \rightarrow l_1$
7	3.21 / 386	0.0000	+0.57 $h_3 \rightarrow l_1$	$-0.28 h_0 \rightarrow l_4$
8	3.21 / 385	0.0017	+0.57 $h_3 \rightarrow l_0$	+0.25 $h_0 \rightarrow I_5$
9	3.24 / 383	0.0000	+0.43 $h_0 \rightarrow l_4$	+0.37 $h_3 \rightarrow l_1$
10	3.24 / 383	0.0017	+0.38 $h_0 \rightarrow I_5$	$-0.37 h_3 \rightarrow l_0$
11	3.38 / 367	0.0003	+0.45 $h_2 \rightarrow l_4$	$-0.32 h_1 \rightarrow l_4$
12	3.38 / 366	0.0000	+0.39 $h_2 \rightarrow I_5$	$-0.37 h_3 \rightarrow l_4$
13	3.49 / 355	0.0074	+0.65 $h_4 \rightarrow l_1$	$-0.22 h_5 \rightarrow l_0$
14	3.49 / 354	0.0000	+0.65 $h_4 \rightarrow l_0$	$-0.22 h_5 \rightarrow l_1$
15	3.70 / 334	0.0000	+0.61 $h_0 \rightarrow l_2$	$-3.31 h_1 \rightarrow l_3$
16	3.72 / 333	0.0070	+0.55 $h_1 \rightarrow l_2$	$-0.39 h_0 \rightarrow I_3$
17	3.73 / 332	0.0000	+0.35 $h_4 \rightarrow l_5$	+0.27 $h_2 \rightarrow I_5$
18	3.73 / 332	0.0038	+0.40 $h_4 \rightarrow l_4$	+0.29 $h_2 \rightarrow l_4$
19	3.83 / 323	0.0091	+0.64 $h_2 \rightarrow l_2$	$-0.18 h_0 \rightarrow I_3$
20	3.88 / 319	0.0000	+0.51 $h_1 \rightarrow l_3$	+0.27 $h_0 \rightarrow l_2$
21	3.89 / 318	0.0130	+0.49 $h_0 \rightarrow I_3$	+0.40 $h_1 \rightarrow l_2$
22	3.94 / 314	0.0000	+0.56 $h_2 \rightarrow I_3$	+0.22 $h_1 \rightarrow I_3$
23	4.03 / 307	0.0124	+0.56 $h_0 \rightarrow l_6$	$-0.28 h_0 \rightarrow l_5$
24	4.06 / 305	0.0000	+0.40 $h_1 \rightarrow l_6$	$-0.28 h_1 \rightarrow l_5$
25	4.09 / 303	0.0000	+0.51 $h_2 \rightarrow l_6$	$-0.25 h_3 \rightarrow l_2$
26	4.10 / 302	0.1061	+0.37 $h_5 \rightarrow l_0$	+0.25 $h_6 \rightarrow I_0$
27	4.11 / 301	0.0000	-0.57 $h_5 \rightarrow l_1$	$-0.21 \ h_4 \rightarrow l_0$
28	4.12 / 301	0.0087	+0.44 $h_5 \rightarrow l_0$	+0.24 $h_0 \rightarrow l_5$
29	4.12 / 301	0.0000	$-0.37 h_0 \rightarrow l_4$	$-0.30 h_4 \rightarrow l_5$
30	4.13 / 300	0.0000	+0.36 $h_1 \rightarrow l_6$	$-0.36 h_3 \rightarrow l_2$
31	4.14 / 299	0.1017	$-0.39 h_6 \rightarrow l_0$	+0.24 $h_5 \rightarrow l_0$
32	4.19 / 296	0.0166	$-0.45 h_3 \rightarrow l_3$	+0.29 $h_1 \rightarrow l_8$

Table S3. $S_0 \rightarrow S_n$ transitions of II in CH₃CN. ΔE (eV), wavelength λ (nm), oscillator strengths (f_{osc}) and the two most significant excitations of each transition are reported: $h_n = HOMO - n$ and $l_n = LUMO + n$.

n	ΔΕ/λ	f_{osc}	excita	ations
1	2.13 / 581	0.0008	+0.70 $h_0 \rightarrow I_0$	
2	2.26 / 548	0.0011	+0.68 $h_1 \rightarrow I_0$	
3	2.39 / 518	0.0209	+0.66 $h_2 \rightarrow I_0$	+0.13 $h_1 \rightarrow l_1$
4	2.44 / 507	0.0621	+0.67 $h_3 \rightarrow I_0$	+0.15 $h_0 \rightarrow l_1$
5	2.57 / 481	0.0228	+0.68 $h_0 \rightarrow l_1$	$-0.15 h_3 \rightarrow l_0$
6	2.72 / 455	0.0002	+0.65 $h_1 \rightarrow l_1$	$-0.17 h_2 \rightarrow l_1$
7	2.81 / 441	0.0007	+0.57 $h_2 \rightarrow l_1$	$-0.34 h_3 \rightarrow l_1$
8	2.83 / 437	0.0016	+0.59 $h_3 \rightarrow l_1$	+0.33 $h_2 \rightarrow l_1$
9	3.08 / 402	0.0007	+0.65 $h_0 \rightarrow l_2$	$-0.14 h_0 \rightarrow l_6$
10	3.12 / 397	0.0012	+0.42 $h_0 \rightarrow I_3$	$-0.36 h_0 \rightarrow l_6$
11	3.14 / 395	0.0023	+0.67 $h_4 \rightarrow I_0$	+0.15 $h_3 \rightarrow l_1$
12	3.23 / 383	0.0009	+0.36 $h_0 \rightarrow I_7$	$-0.24 h_0 \rightarrow l_5$
13	3.26 / 379	0.0041	+0.64 $h_1 \rightarrow l_2$	$-0.13 h_0 \rightarrow l_7$
14	3.28 / 377	0.0111	+0.30 $h_1 \rightarrow I_3$	$-0.29 h_1 \rightarrow l_6$
15	3.31 / 374	0.0035	$-0.33 h_2 \rightarrow l_6$	+0.29 $h_2 \rightarrow l_3$
16	3.35 / 370	0.0024	+0.47 $h_3 \rightarrow l_2$	$-0.43 h_2 \rightarrow l_2$
17	3.38 / 366	0.0016	$-0.45 h_2 \rightarrow l_2$	+0.26 $h_0 \rightarrow I_3$
18	3.43 / 361	0.0012	+0.39 $h_3 \rightarrow l_2$	+0.37 $h_0 \rightarrow I_3$
19	3.46 / 357	0.0014	+0.51 $h_5 \rightarrow l_0$	+0.24 $h_4 \rightarrow l_1$
20	3.50 / 354	0.0007	+0.57 $h_4 \rightarrow l_1$	$-0.20 h_5 \rightarrow l_0$
21	3.56 / 348	0.0128	+0.54 $h_1 \rightarrow I_3$	+0.21 $h_3 \rightarrow l_3$
22	3.58 / 345	0.0007	+0.56 $h_6 \rightarrow l_0$	$-0.29 h_5 \rightarrow l_0$
23	3.61 / 343	0.0113	+0.47 $h_3 \rightarrow l_3$	$-0.27 h_2 \rightarrow l_3$
24	3.64 / 340	0.0623	$-0.63 h_0 \rightarrow l_8$	+0.18 $h_3 \rightarrow l_3$

Table S4. $S_0 \rightarrow S_n$ transitions of I *in vacuo*. ΔE (eV), wavelength λ (nm), oscillator strengths (f_{osc}) and the two most significant excitations of each transition are reported: $h_n = HOMO - n$ and $I_n = LUMO + n$.

п	ΔΕ/λ	f_{osc}	excita	ations
1	2.88 / 430	0.0522	+0.69 $h_0 \rightarrow I_0$	
2	2.89 / 429	0.0000	+0.18 $h_1 \rightarrow l_0$	+0.68 $h_0 \rightarrow l_1$
3	2.96 / 418	0.0000	+0.55 $h_1 \rightarrow I_0$	+0.42 $h_2 \rightarrow l_1$
4	2.96 / 418	0.0242	+0.63 $h_2 \rightarrow l_0$	+0.28 $h_1 \rightarrow l_1$
5	2.99 / 415	0.0000	$-0.55 h_2 \rightarrow l_1$	+0.40 $h_1 \rightarrow I_0$
6	2.99 / 414	0.0293	$-0.63 h_1 \rightarrow l_1$	+0.27 $h_2 \rightarrow I_0$
7	3.17 / 391	0.0000	+0.68 $h_3 \rightarrow I_0$	+0.11 $h_2 \rightarrow l_1$
8	3.18 / 389	0.0029	+0.69 $h_3 \rightarrow l_1$	
9	3.26 / 380	0.0004	+0.49 $h_0 \rightarrow l_4$	+0.32 $h_1 \rightarrow l_5$
10	3.27 / 379	0.0000	+0.47 $h_1 \rightarrow l_4$	$-0.34 h_0 \rightarrow l_3$
11	3.41 / 363	0.0003	+0.53 $h_2 \rightarrow l_4$	-0.27 $h_3 \rightarrow l_5$
12	3.42 / 362	0.0000	$-0.39 h_3 \rightarrow l_4$	$-0.37 h_2 \rightarrow l_3$
13	3.76 / 329	0.0095	+0.67 $h_0 \rightarrow l_2$	+0.12 $h_1 \rightarrow I_3$
14	3.80 / 326	0.0040	+0.64 $h_4 \rightarrow l_0$	$-0.22 h_7 \rightarrow l_1$
15	3.81 / 325	0.0000	+0.47 $h_0 \rightarrow I_3$	+0.31 $h_1 \rightarrow l_2$
16	3.81 / 325	0.0000	+0.55 $h_4 \rightarrow l_1$	-0.25 $h_1 \rightarrow l_2$
17	3.83 / 323	0.0000	+0.31 $h_4 \rightarrow l_1$	+0.32 $h_1 \rightarrow l_2$
18	3.83 / 323	0.0037	+0.41 $h_0 \rightarrow l_4$	+0.34 $h_1 \rightarrow I_3$
19	3.88 / 319	0.0084	+0.66 $h_2 \rightarrow l_2$	
20	3.92 / 316	0.0000	$-0.45 h_1 \rightarrow l_2$	+0.32 $h_0 \rightarrow I_5$
21	3.99 / 310	0.0027	+0.44 $h_1 \rightarrow l_3$	+0.44 $h_1 \rightarrow l_5$
22	3.99 / 310	0.0000	+0.50 $h_2 \rightarrow I_3$	+0.37 $h_2 \rightarrow l_5$
23	4.06 / 305	0.0000	+0.54 $h_3 \rightarrow l_2$	+0.27 $h_0 \rightarrow l_6$
24	4.07 / 304	0.0000	+0.50 $h_0 \rightarrow l_6$	$-0.24 h_0 \rightarrow l_5$

Table S5. $S_0 \rightarrow S_n$ transitions of II *in vacuo*. ΔE (eV), wavelength λ (nm), oscillator strengths (f_{osc}) and the two most significant excitations of each transition are reported: $h_n = HOMO - n$ and $I_n = LUMO + n$.

Table S6. Significant estimated strenghts of the Ag-Ag donor-acceptor (bond-antibond) interactions in the NBO basis calculated *in vacuo* by the second-order perturbative energy E(2) in kcal/mol (NBO program (version 3.1) in Gaussian 09) of I and II. The specification of the orientations of the *p* and *d* atomic orbitals describing the NBOs is privileged with respect to their detailed description to evidence the character of the donor-acceptor interaction. a) Triple- ζ basis set (ECP28MDF + VTZ on Ag), b) double- ζ basis set (LANL2DZ on Ag). The *z*-axis lies in the direction defined by the Ag-Ag atoms.

	donor \rightarrow acceptor	E(2)	donor \rightarrow acceptor	E(2)
a)	$4s \rightarrow 5p_z$	11.48	$4s \rightarrow 5p_z$	8.65
	$5s \rightarrow 5s$	632.22	$5s \rightarrow \text{Rydberg}(6s, 7p_z, 5d_{xy})$	11.68
	$5s \rightarrow \text{Rydberg}(6s, 6p_y)$	37.14	$5s \rightarrow \text{Rydberg}(6s, 7p_z, 5d_{xy})$	11.22
			$5s \rightarrow \text{Rydberg}(7s, 7p_z, 5d_{z^2})$	23.47
			$5p_x$, $5p_y \rightarrow \text{Rydberg}(6p_x, 7p_y)$	89.26
			$5p_x, 5p_y \rightarrow \text{Rydberg}(6p_y, 7p_y, 5d_{yz})$	28.58
b)	$5s \rightarrow 5p_z$	93.15	$5s \rightarrow 5p_z$	28.53

Program References

Gaussian-09 Revision D.01 by M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Peters- son, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. M. Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J.Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox.

NBO Version 3.1 by E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.

Gabedit version 2.4.8 by A.-R. Allouche, J. Comput. Chem., 2011, 32, 174-182.