Supporting Information for the manuscript:

A Single Molecule Magnet to Single Molecule Magnet Transformation via a Solvothermal Process: Fe\textsubscript{4}Dy\textsubscript{2} → Fe\textsubscript{6}Dy\textsubscript{3}

Sihuai Chen, Valeriu Mereacre, Christopher E. Anson and Annie K. Powell

a Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe, Germany.
b Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Table S1 Magnetic data of compounds 1-4 summarised from the dc measurements.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ground state of Lniii</th>
<th>χT expected for non-interacting ions per complex (cm3 K mol-1)</th>
<th>χT measured at 300 K per complex (cm3 K mol-1)</th>
<th>χT measured at 1.8 K per complex (cm3 K mol-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe\textsubscript{4}Y\textsubscript{2}, 1</td>
<td>17.5</td>
<td>14.5</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Fe\textsubscript{4}Dy\textsubscript{2}, 2</td>
<td>$^6\text{H}_{15/2}$</td>
<td>45.8</td>
<td>42.3</td>
<td>32.6</td>
</tr>
<tr>
<td>Fe\textsubscript{6}Y\textsubscript{3}, 3</td>
<td>26.3</td>
<td>12.0</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Fe\textsubscript{6}Dy\textsubscript{3}, 4</td>
<td>$^6\text{H}_{15/2}$</td>
<td>68.8</td>
<td>54.7</td>
<td>31.1</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015.
Figure S1 Field dependence of magnetisation at low temperature for compound 1 (top-left), 2 (top-right) and 3 (bottom).

Figure S2 Temperature dependence of the in-phase (χ') (left) and out-of-phase (χ'') (right) ac susceptibility components at the indicated frequencies in zero dc field for 2.
Figure S3 Cole-Cole plots under zero dc field for compound 2.

Figure S4 Arrhenius plot using ac data under zero dc field for compound 2.

Figure S5 Frequency dependence of the in-phase (χ') (left) and out-of-phase (χ'') (right) ac susceptibility components under the indicated dc fields at 1.8 K for 2.
Figure S6 Temperature dependence of the in-phase (χ') (left) and out-of-phase (χ'') (right) ac susceptibility components at the indicated frequencies under 500 Oe dc field for 2.

Figure S7 Arrhenius plot using ac data under 500 Oe dc field for compound 2.

Figure S8 Arrhenius plot using ac data under 1000 Oe dc field for compound 4.