SUPPLEMENTARY INFORMATION FOR

Analysis of the influence of synthetic parameters on the structure and physico-chemical properties of anisotropic iron oxide nanocrystals and their biological stability and compatibility.

Alberto Pardo,¹ Rosa Pujales,¹ Mateo Blanco,¹ Eva M. Villar,¹ Silvia Barbosa,² Pablo Taboada,² Víctor Mosquera²

¹Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada; 15782-Santiago de Compostela, Spain
**Figure S1:** FTIR spectrum of as-synthesized 48 nm IONCS.

**Figure S2:** TEM image of IONCS obtained at a reaction temperature of 265 °C.
Figure S3: Magnetization as a function of the applied magnetic field for 94 nm (a,b) and 28 nm IONCS (c,d) at 5 and 300 K, respectively. e) ZFC (O) and FC (□) curves of powder 28 nm IONCs samples.
Figure S4: Magnetization as a function of the applied magnetic field for the powder 55 nm cubooctahedra samples at a) 5 and b) 300 K. c) ZFC (△) and FC (○) curves of powder 55 nm cubooctahedra samples.
The spectrum of DMSA-coated IONCs showed bands at 1620 cm\(^{-1}\) to the vibration of the C=O. The band present at 1370 cm\(^{-1}\) is due to vibrations of CH\(_2\) groups. At 2340 cm\(^{-1}\), a weak band assigned to the vibration of S–H bond is observed. Furthermore, a shoulder at 1178 cm\(^{-1}\) can be assigned to C=O stretching modes. The small band at 1055 cm\(^{-1}\) can correspond to the vibration of the bond S–CH. The signals at ca. 545 cm\(^{-1}\) corresponds to the Fe-O vibration related to the magnetite phase.
**Figure S6:** Bright field microscopy of MSC cells. The arrows denote the presence of IONCs inside the cells. Scale bar 20 nm.
Figure S7: Merged fluorescence microscopy of HeLa cells denoting the internalization of DMSA-coated IONCs inside the cells without altering their cytoskeleton. Cell nuclei are stained with DAPI (in blue), and the actin of cytoplams with Bodipy Phalloidin (in red).