Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information for Dalton Transactions

Supplementary data

Rhenium(I) Terpyridine Complexes – Synthesis, Photophysical Properties and Application in Organic Light Emitting Devices.

Tomasz Klemens^a, Anna Świtlicka-Olszewska^a, Barbara Machura^{a*}, Marzena Grucela^b, Ewa Schab-Balcerzak^{b*}, Karolina Smolarek^c, Sebastian Mackowski^c, Agata Szlapa^d, Slawomir Kula^d, Stanisław Krompiec^d, Piotr Lodowski^e, Karol Erfurt^f and Anna Chrobok^f

^aDepartment of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland, E-mail: bmachura@poczta.onet.pl

^bCentre of Polymer and Carbon Materials, Polish Academy of Sciences,

34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland

^cInstitute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun, Poland

^dDepartment of Inorganic, Organometallic Chemistry and Catalysis, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland

^eDepartment of Theoretical Chemistry, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland

^fDepartment of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland Tables:

Table S1. Crystal data and structure refinement of 2, 3 and 4 complexes.

Table S2. The experimental bond lengths [Å] and angles [°] for the rhenium(I) complexes.

Table S3. Short intra- and intermolecular contacts detected in the structures of the tricarbonyl rhenium(I) complexes.

Table S4. Comparison of experimental and theoretical bond lengths [Å] and angles [°] for 2, 3 and 4.

Table S5. Frontier molecular orbital composition (%) in the ground state for complex 1 calculated at the DFT/B3LYP/DEF2-TZVPD level.

Table S6. Frontier molecular orbital composition (%) in the ground state for complex 2 calculated at the DFT/B3LYP/DEF2-TZVPD level.

Table S7. Frontier molecular orbital composition (%) in the ground state for complex 3 calculated at the DFT/B3LYP/DEF2-TZVPD level.

Table S8. Frontier molecular orbital composition (%) in the ground state for complex 4 calculated at the DFT/B3LYP/DEF2-TZVPD level.

Table S9. Frontier molecular orbital composition (%) in the ground state for complex 5 calculated at the DFT/B3LYP/DEF2-TZVPD level.

Table S10. Frontier molecular orbital composition (%) in the ground state for complex 6 calculated at the DFT/B3LYP/DEF2-TZVPD level.

Table S11. The energies and characters of the selected spin-allowed electronic transitions for 1 calculated

 with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Table S12. The energies and characters of the selected spin-allowed electronic transitions for 2 calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Table S13. The energies and characters of the selected spin-allowed electronic transitions for 3 calculated

 with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Table S14. The energies and characters of the selected spin-allowed electronic transitions for 4 calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Table S15. The energies and characters of the selected spin-allowed electronic transitions for 5 calculated

 with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Table S16. The energies and characters of the selected spin-allowed electronic transitions for **6** calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Table S17. Calculated phosphorescence emission energies of 1-6, compared to the experimental values (in MeCN).

Figures:

Figure S1. A view of the crystal packing showing intermolecular π - π stacking interactions for **2** and **3**.

Figure S2. 1D supramolecular network of **4** with marked O–H•••O and O–H•••Cl hydrogen bonds (a); A view of the pairing of the chains showing the π – π stacking between the pyridyl and thiophene rings of neighbouring 4'-R⁴-terpy ligands.

Figure S3. Experimental (black) and calculated (red) electronic absorption spectra of **1-6** in MeCN solution.

Figure S4. Natural transition orbitals (NTOs) of complexes **1-6** illustrating the nature of optically active singlet excited states in the absorption bands.

Figure S5. Excitation and emission spectra together with PL lifetime curves for **1-6** in CH₂Cl₂, CHCl₃, MeCN and in solid state.

Figure S6. Isodensity surface plots of the HSOMO and LSOMO for the complexes 1-6 at their T_1 TDDFT state geometry. Blue and grey colours show regions of positive and negative spin density values, respectively.

Figure S7. X- ray diffraction patterns of blend with 15 % of 1

Figure S8. AFM images (10 μ m x 10 μ m) of 15% doped PVK with (a) [ReCl(CO)₃(4'-R¹terpy- κ^2 N)]), (b) [ReCl(CO)₃(4'-R⁴terpy- κ^2 N)] (c) [ReCl(CO)₃(4'-R⁶terpy- κ^2 N)] and (d) pure PVK film in devices.

Table S1.	Crystal	data and	structure	refinement	of 2, 3	3 and 4	complexes.
	2						1

	2	3	4
Empirical formula	C ₂₂ H ₁₃ ClN ₃ O ₄ Re	C ₂₂ H ₁₃ ClN ₃ O ₃ ReS	C ₂₆ H ₁₉ ClN ₃ O ₅ ReS ₂
Formula weight	605.00	621.06	739.24
Temperature [K]	298.0(2)	298.0(2)	298.0(2)
Wavelength [Å]	0.71073	0.71073	0.71073
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_1/c$	$P2_1/c$	$P2_1/n$
Unit cell dimensions [Å, °]	a = 11.6471(12)	a = 11.4946(6)	a = 15.0564(6)
	b = 11.1797(9)	b = 11.4393(6)	b = 7.5422(3)
	c = 15.9757(13)	c = 16.3187(9)	c = 24.6011(13)
	$\beta = 103.161(9)$	$\beta = 103.256(5)$	$\beta = 105.250(5)$
Volume [Å ³]	2025.6(3)	2088.58(19)	2695.3(2)
Z	4	4	4
Density (calculated) [Mg/m ³]	1.984	1.975	1.822
Absorption coefficient [mm ⁻¹]	6.167	6.076	4.805
F(000)	1160	1192	1440
Crystal size [mm]	0.34 x 0.27 x 0.04	0.10 x 0.10 x 0.03	0.29 x 0.04 x 0.03
θ range for data collection [°]	3.59 to 25.05	3.47 to 25.05	3.43 to 25.05
Index ranges	$-13 \le h \le 11$	$-13 \le h \le 13$	$-17 \le h \le 17$
	$-11 \le k \le 13$	$-13 \le k \le 13$	$-8 \le k \le 8$
	$-18 \le l \le 19$	$-19 \le l \le 19$	$-26 \le l \le 29$
Reflections collected	11467	10472	14216
Independent reflections	$3578 (R_{int} = 0.0671)$	$3700 (R_{int} = 0.0443)$	$4742(R_{int}=0.050)$
Completeness to $2\theta = 50^{\circ}$ [%]	99.7	99.7	99.7
Max. and min. transmission	1.000 and 0.338	1.000 and 0.610	1.000 and 0.554
Data / restraints / parameters	3578 / 0 / 280	3700 / 0 / 280	4742 / 0 / 356
Goodness-of-fit on F ²	1.047	1.062	1.079
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0404$	$R_1 = 0.0344$	$R_1 = 0.0411$
	$wR_2 = 0.0950$	$wR_2 = 0.0792$	$wR_2 = 0.0892$
R indices (all data)	$R_1 = 0.0556$	$R_1 = 0.0479$	$R_1 = 0.0566$
	$wR_2 = 0.1048$	$wR_2 = 0.0838$	$wR_2 = 0.0964$
Largest diff. peak and hole[e Å ⁻³]	1.695 and -1.597	1.286 and -1.237	1.150 and -0.753
CCDC number	1423469	1423470	1423471
	1		

	2	3	4
Bond lengths			
Re(1)-C(1)	1.925(10)	1.920(8)	1.932(9)
Re(1)-C(2)	1.898(9)	1.888(7)	1.912(7)
Re(1)-C(3)	1.946(10)	1.897(7)	1.918(8)
Re(1) - N(1)	2.157(6)	2.170(5)	2.172(5)
Re(1) - N(2)	2.209(5)	2.219(5)	2.224(5)
$\operatorname{Re}(1)$ - $\operatorname{Cl}(1)$	2.483(2)	2.4828(16)	2.4927(16)
C(1)–O(1)	1.141(11)	1.153(8)	1.140(10)
C(2)–O(2)	1.150(10)	1.153(9)	1.136(8)
C(3)–O(3)	1.101(11)	1.148(8)	1.121(9)
Bond angles			
C(2)-Re(1)-C(1)	86.4(3)	86.8(3)	87.2(3)
C(3)-Re(1)-C(1)	88.2(3)	89.2(3)	91.4(3)
C(3)-Re(1)-C(2)	87.1(4)	86.4(3)	88.5(3)
C(1)-Re(1)-N(1)	174.9(3)	174.5(2)	175.3(2)
C(2)-Re(1)-N(1)	96.8(2)	96.8(2)	95.5(3)
C(3)-Re(1)-N(1)	95.9(3)	95.1(2)	92.6(3)
C(1)-Re(1)-N(2)	101.8(3)	101.8(2)	101.7(2)
C(2)-Re(1)-N(2)	171.2(3)	171.0(2)	168.6(2)
C(3)-Re(1)-N(2)	96.1(3)	96.3(2)	98.4(2)
N(1)-Re(1)-N(2)	74.77(19)	74.44(16)	75.24(19)
C(1)-Re(1)-Cl(1)	92.8(3)	92.4(2)	89.8(2)
C(2)-Re(1)-Cl(1)	93.3(3)	93.4(2)	91.9(2)
C(3)-Re(1)-Cl(1)	179.0(2)	178.4(2)	178.8(2)
N(1)-Re(1)-Cl(1)	83.10(16)	83.27(12)	86.25(13)
N(2) - Re(1) - Cl(1)	83.36(15)	83.61(12)	80.93(12)
N(2)-Re(1)-Cl(1)	83.36(15)	83.61(12)	80.93(12)

Table S2. The experimental bond lengths [Å] and angles [°] for the rhenium(I) complexes.

 Table S3. Short intra- and intermolecular contacts detected in the structures of the rhenium(I) complexes.

D—H•••A	D—H	Н•••А	D•••A	D —Н•••А					
			[Å]	[°]					
2									
C(5)–H(5)•••O(2)#1	0.93	2.56	3.208(11)	127.00					
C(7)–H(7)···Cl(1)#2	0.93	2.66	3.567(8)	166.00					
C(12)–H(12)···O(4)	0.93	2.49	2.806(9)	100.00					
		3							
C(5)–H(5)•••O(2)#3	0.93	2.58	3.232(8)	127.00					
C(7)–H(7)•••Cl(1)#4	0.93	2.65	3.559(7)	165.00					
C(12)-H(12)····S(1)	0.93	2.71	3.108(6)	107.00					
		4							
	<u> </u>								
O(5B)–H(5BA)•••O(4)#5	0.85	1.86	2.644(19)	152.00					
O(5B)–H(5BB)•••Cl(1)#5	0.85	2.48	3.21(2)	145.00					
O(4)–H(4A)•••O(5B)	0.85	1.90	2.68(2)	152.00					
O(4)-H(4B) ···· $N(3)$	0.85	2.14	2.967(13)	163.00					
C(7)–H(7)•••Cl(1)#6	0.93	2.80	3.680(7)	159.00					
C(12)-H(12)···· $S(1)$	0.93	2.73	3.119(7)	106.00					
C(16)–H(16) ^{•••} O(3)#7	0.93	2.41	3.339(12)	175.00					
C(20)-H(20)···Cl(1)#6	0.93	2.74	3.569(7)	150.00					

Symmetry codes: #1: -x,-y,-z; #2: 1-x,-1/2+y,1/2-z; #3: 1-x,1-y,-z; #4: 2-x,1/2+y,1/2-z; #5: 3/2-x,-1/2+y, 3/2-z #6: 1-x,2-y,1-z; #7: 2-x,1-y,1-z

Bond lengths	Evn	Opt.	Bond angles	Exp.	Opt.
Bolid lengths	Exp.	S ₀			S ₀
			2		
	1		1	1	
Re(1)-C(1)	1.925(10)	1.913	C(2)-Re(1)-C(1)	86.4(3)	91.13
Re(1)-C(2)	1.898(9)	1.939	C(3)-Re(1)-C(1)	88.2(3)	89.87
Re(1)-C(3)	1.946(10)	1.921	C(3)-Re(1)-C(2)	87.1(4)	86.98
Re(1)-N(1)	2.157(6)	2.202	C(1)-Re(1)-N(1)	174.9(3)	93.10
$\operatorname{Re}(1)-\operatorname{N}(2)$	2.209(5)	2.266	C(2)-Re(1)-N(1)	96.8(2)	174.40
$\operatorname{Re}(1)$ - $\operatorname{Cl}(1)$	2.483(2)	2.550	C(3)-Re(1)-N(1)	95.9(3)	96.69
C(1)-O(1)	1.141(11)	1.170	C(1)-Re(1)-N(2)	101.8(3)	96.34
C(2)-O(2)	1.150(10)	1.164	C(2)-Re(1)-N(2)	171.2(3)	101.61
C(3)-O(3)	1.101(11)	1.169	C(3)-Re(1)-N(2)	96.1(3)	169.25
			N(1)-Re(1)-N(2)	74.77(19)	74.28
			C(1)-Re(1)-Cl(1)	92.8(3)	177.74
			C(2)-Re(1)-Cl(1)	93.3(3)	90.95
			C(3)-Re(1)-Cl(1)	179.0(2)	91.13
			N(1)-Re(1)-Cl(1)	83.10(16)	84.77
			N(2)-Re(1)-Cl(1)	83.36(15)	82.38
			3		
Re(1)-C(1)	1.920(8)	1.919	C(2)-Re(1)-C(1)	86.8(3)	86.84
Re(1)-C(2)	1.888(7)	1.937	C(3)-Re(1)-C(1)	89.2(3)	90.23
Re(1)-C(3)	1.897(7)	1.915	C(3)-Re(1)-C(2)	86.4(3)	90.60
Re(1) - N(1)	2.170(5)	2.202	C(1) - Re(1) - N(1)	174.5(2)	169.31
Re(1)-N(2)	2.219(5)	2.262	C(2) - Re(1) - N(1)	96.8(2)	96.32
Re(1)-Cl(1)	2.4828(16)	2.554	C(3)-Re(1)-N(1)	95.1(2)	93.52
C(1)-O(1)	1.153(8)	1.168	C(1)-Re(1)-N(2)	101.8(2)	102.22
C(2) - O(2)	1.153(9)	1.164	C(2)-Re(1)-N(2)	171.0(2)	169.31
C(3) - O(3)	1.148(8)	1.169	C(3)-Re(1)-N(2)	96.3(2)	95.27
			N(1)-Re(1)-N(2)	74.44(16)	74.24
			C(1)-Re(1)-Cl(1)	92.4(2)	91.66
			C(2)-Re(1)-Cl(1)	93.4(2)	91.05
			C(3)-Re(1)-Cl(1)	178.4(2)	177.55
			N(1)-Re(1)-Cl(1)	83.27(12)	84.73
			N(2)-Re(1)-Cl(1)	83.61(12)	82.61
			4		
Re(1)-C(1)	1.932(9)	1.939	C(2)-Re(1)-C(1)	87.2(3)	91.17
Re(1)-C(2)	1.912(7)	1.913	C(3)-Re(1)-C(1)	91.4(3)	86.96
Re(1)-C(3)	1.918(8)	1.921	C(3)-Re(1)-C(2)	88.5(3)	89.83
Re(1)-N(1)	2.172(5)	2.203	C(1)-Re(1)-N(1)	175.3(2)	174.34
Re(1)-N(2)	2.224(5)	2.264	C(2)-Re(1)-N(1)	95.5(3)	93.16
Re(1)-Cl(1)	2.4927(16)	2.550	C(3)-Re(1)-N(1)	92.6(3)	96.69
C(1)-O(1)	1.140(10)	1.170	C(1)-Re(1)-N(2)	101.7(2)	101.68
C(2) - O(2)	1.136(8)	1.164	C(2)-Re(1)-N(2)	168.6(2)	169.30
C(3) - O(3)	1.121(9)	1.167	C(3)-Re(1)-N(2)	98.4(2)	96.23
			N(1)-Re(1)-N(2)	75.24(19)	74.24
			C(1)-Re(1)-Cl(1)	89.8(2)	90.92
			C(2)-Re(1)-Cl(1)	91.9(2)	91.14
			C(3) - Re(1) - Cl(1)	178.8(2)	177.74
			N(1)-Re(1)-Cl(1)	86.25(13)	84.70
			N(2)-Re(1)-Cl(1)	80.93(12)	82.50

 Table S4. Comparison of experimental and theoretical bond lengths [Å] and angles [°] for 2, 3 and 4.

Table S5. Frontier molecular orbital composition (%) in the ground state for complex 1 calculated at the DFT/B3LYP/DEF2-TZVPD level.

Orbital	Energy	Contribut	tion (%)				Character
	[eV]	Re	3CO	Cl	R	terpy	
LUMO+5	-0.78	17.85	24.33	2.89	0.09	54.84	$\pi^{*}(4'-R-terpy) + d(Re) + \pi^{*}(CO)$
LUMO+4	-1.00	21.61	36.74	8.46	0.17	33.02	$d(Re) + \pi^{*}(CO) + \pi^{*}(4'-R-terpy)$
LUMO+3	-1.19	23.04	19.04	0.81	1.57	55.54	$\pi^{*}(4'-R-terpy) + d(Re) + \pi^{*}(CO)$
LUMO+2	-1.50	12.53	4.77	1.83	1.44	79.43	$\pi^*(4'-R-terpy) + d(Re)$
LUMO+1	-1.87	4.88	1.65	0.89	8.12	84.46	$\pi^*(4'-R-terpy)$
LUMO	-2.53	10.25	3.74	2.77	6.59	76.65	$\pi^*(4'-R-terpy) + d(Re)$
HOMO	-5.94	10.51	4.68	1.85	59.86	23.10	$\pi(4'-R-terpy) + d(Re)$
HOMO-1	-6.30	43.76	26.08	22.67	0.89	6.60	$d(Re) + \pi(CO) + p(Cl)$
HOMO-2	-6.47	36.01	21.79	26.14	8.05	8.01	$d(Re) + \pi(CO) + p(Cl)$
HOMO-3	-6.73	54.66	31.22	1.49	0.10	12.53	$d(\text{Re}) + \pi(\text{CO})$
HOMO-4	-6.86	0.26	0.02	0.10	97.25	2.37	$\pi(4'-R-terpy)$
HOMO-5	-7.08	2.95	2.72	0.24	0.81	93.28	$\pi(4'-R-terpy)$

Table S6. Frontier molecular orbital composition (%) in the ground state for complex **2** calculated at the DFT/B3LYP/DEF2-TZVPD level.

Orbital	Energy	Contribution (%)					Character
	[eV]	Re	3CO	Cl	R	terpy	
LUMO+5	-0.844	17.48	22.40	0.65	11.35	48.12	$\pi^{*}(4'-R-terpy) + d(Re) + \pi^{*}(CO)$
LUMO+4	-1.007	21.06	36.41	8.49	0.10	33.94	$d(Re) + \pi^{*}(CO) + \pi^{*}(4'-R-terpy)$
LUMO+3	-1.236	19.91	17.14	0.69	2.33	59.93	$\pi^{*}(4'-R-terpy) + d(Re) + \pi^{*}(CO)$
LUMO+2	-1.549	13.59	4.98	2.06	1.72	77.65	$\pi^*(4'-R-terpy) + d(Re)$
LUMO+1	-1.977	2.63	1.77	0.65	7.88	87.07	$\pi^*(4'-R-terpy)$
LUMO	-2.656	9.95	3.44	2.71	9.67	74.23	$\pi^*(4'-R-terpy)$
HOMO	-6.252	30.31	18.08	11.69	25.60	14.32	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) + \pi(4'-\text{R-terpy})$
HOMO-1	-6.332	41.79	22.68	20.21	6.32	9.00	$d(Re) + \pi(CO) + p(Cl)$
HOMO-2	-6.614	17.27	10.59	19.96	16.72	35.46	$\pi(4'-\text{R-terpy})+d(\text{Re}) + \pi(\text{CO})+p(\text{Cl})$
HOMO-3	-6.754	54.35	30.88	1.56	12.16	1.05	$d(\text{Re}) + \pi(\text{CO})$
HOMO-4	-6.748	2.98	2.76	0.48	0.72	93.06	$\pi(4'-R-terpy)$
HOMO-5	-7.129	2.14	1.07	7.13	0.46	89.20	$\pi(4'-R-terpy)$

Table S7. Frontier molecular orbital composition (%) in the ground state for complex **3** calculated at the DFT/B3LYP/DEF2-TZVPD level.

Orbital	Energy		Cor	tribution (%)		Character
	[eV]	Re	3CO	Cl	R	terpy	
LUMO+5	-0.926	31.39	34.44	6.39	6.67	21.12	$d(Re) + \pi^{*}(CO) + \pi^{*}(4'-R-terpy)$
LUMO+4	-1.034	22.91	23.09	2.57	0.73	50.70	$\pi^{*}(4'-R-terpy) + d(Re) + \pi^{*}(CO)$
LUMO+3	-1.213	10.44	7.07	0.70	9.08	72.71	$\pi^*(4'-R-terpy) + d(Re)$
LUMO+2	-1.542	9.42	4.40	1.95	3.12	81.11	$\pi^*(4'-R-terpy)$
LUMO+1	-1.994	1.29	1.33	0.42	13.34	83.62	$\pi^*(4'-R-terpy)$
LUMO	-2.686	10.28	3.27	2.85	12.03	71.56	$\pi^*(4'-R-terpy) + d(Re)$
HOMO	-6.229	41.24	25.60	19.22	5.77	8.17	$d(Re) + \pi(CO) + p(Cl)$
HOMO-1	-6.312	38.85	21.36	17.15	11.57	11.07	$d(Re) + \pi(CO) + p(Cl) + \pi(4'-R-terpy)$
HOMO-2	-6.675	14.28	8.38	14.21	45.03	18.09	$\pi(4'-\text{R-terpy}) + d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl})$
HOMO-3	-6.716	51.48	28.87	1.96	6.70	10.98	$d(Re) + \pi(CO) + p(Cl) + \pi(4'-R-terpy)$
HOMO-4	-7.129	0.99	1.28	0.26	11.80	85.67	$\pi(4'-R-terpy)$
HOMO-5	-7.320	0.15	0.16	0.11	89.67	9.91	$\pi(4'-R-terpy)$

Table S8. Frontier molecular orbital composition (%) in the ground state for complex 4 calculated at the DFT/B3LYP/DEF2-TZVPD level.

Orbital	Energy	Contribu	tion (%)				Character
	[eV]	Re	3CO	Cl	R	terpy	
LUMO+5	-1.007	23.36	37.46	8.32	0.18	30.68	$d(Re) + \pi^{*}(CO) + \pi^{*}(4'-R-terpy)$
LUMO+4	-1.143	27.29	21.78	0.86	10.37	39.70	$\pi^{*}(4'-R-terpy) + d(Re) + \pi^{*}(CO)$
LUMO+3	-1.213	4.42	15.83	0.26	21.33	58.17	$\pi^*(4'-R-terpy)$
LUMO+2	-1.542	11.98	15.19	2.28	12.46	58.08	$\pi^{*}(4'-R-terpy) + d(Re) + \pi^{*}(CO)$
LUMO+1	-1.994	2.30	2.36	0.60	20.04	74.40	$\pi^*(4'-R-terpy)$
LUMO	-2.686	8.66	3.36	2.30	22.68	63.00	$\pi^*(4'-R-terpy)$
НОМО	-6.229	6.14	2.15	0.81	76.92	13.98	$\pi(4'-R-terpy)$
HOMO-1	-6.312	43.69	26.96	22.87	0.60	5.88	$d(Re) + \pi(CO) + p(Cl)$
HOMO-2	-6.675	39.83	24.08	25.14	4.74	6.21	$d(Re) + \pi(CO) + p(Cl)$
HOMO-3	-6.716	54.47	31.86	1.55	0.13	11.99	$d(\text{Re}) + \pi(\text{CO})$
HOMO-4	-7.102	2.47	6.41	0.06	18.57	72.49	$\pi(4'-\text{R-terpy})$
HOMO-5	-7.184	0.24	0.66	0.01	91.35	7.74	$\pi(4'-R-terpy)$

Table S9. Frontier molecular orbital composition (%) in the ground state for complex **5** calculated at the DFT/B3LYP/DEF2-TZVPD level.

Orbital	Energy	Contribution (%)					Character
	[eV]	Re	3CO	Cl	R	terpy	
LUMO+5	-0.95	31.33	34.38	5.19	7.12	21.98	$d(Re) + \pi^{*}(CO) + \pi^{*}(4'-R-terpy)$
LUMO+4	-1.03	21.17	22.07	3.05	1.00	52.71	$\pi^{*}(4'-R-terpy) + d(Re) + \pi^{*}(CO)$
LUMO+3	-1.25	9.88	5.38	0.51	10.58	73.65	$\pi^*(4'-R-terpy) + d(Re)$
LUMO+2	-1.55	9.12	4.36	2.04	3.61	80.87	$\pi^*(4'-R-terpy)$
LUMO+1	-2.06	1.39	1.39	0.39	14.81	82.02	$\pi^*(4'-R-terpy)$
LUMO	-2.74	10.77	3.10	2.80	13.94	69.39	$\pi^*(4'-R-terpy) + d(Re)$
HOMO	-6.17	17.79	10.76	6.29	54.20	10.96	$\pi(4'-\text{R-terpy}) + d(\text{Re}) + \pi^*(\text{CO})$
HOMO-1	-6.26	39.42	23.01	19.39	11.06	7.12	$d(Re) + \pi(CO) + p(Cl) + \pi(4'-R-terpy)$
HOMO-2	-6.42	27.34	15.92	16.24	35.84	4.66	$d(\text{Re}) + \pi(\text{CO}) + p(\text{Cl}) + \pi(4'-\text{R-terpy})$
HOMO-3	-6.67	8.07	4.76	7.69	68.40	11.08	$\pi(4'-R-terpy)$
HOMO-4	-6.55	53.21	29.82	1.34	5.97	9.66	$d(\text{Re}) + \pi(\text{CO})$
HOMO-5	-7.17	1.05	1.44	0.27	1.12	96.12	$\pi(4'-R-terpy)$

Table S10. Frontier molecular orbital composition (%) in the ground state for complex **6** calculated at the DFT/B3LYP/DEF2-TZVPD level.

Orbital	Energy	Contribut	ion (%)				Character
	[eV]	Re	3CO	Cl	R	terpy	
LUMO+5	-0.90	31.09	34.84	6.81	6.13	21.13	$d(Re) + \pi^{*}(CO) + \pi^{*}(4'-R-terpy)$
LUMO+4	-1.01	24.03	23.46	2.47	0.80	49.24	$\pi^{*}(4'-R-terpy) + d(Re) + \pi^{*}(CO)$
LUMO+3	-1.18	9.76	7.90	0.79	7.87	73.68	$\pi^*(4'-R-terpy)$
LUMO+2	-1.51	9.60	4.30	1.93	2.73	81.44	$\pi^*(4'-R-terpy)$
LUMO+1	-1.96	1.28	1.38	0.38	15.42	81.54	$\pi^*(4'-R-terpy)$
LUMO	-2.64	9.04	3.27	2.79	15.11	69.79	$\pi^*(4'-R-terpy)$
НОМО	-5.78	6.69	2.63	0.91	74.61	15.16	$\pi(4'-R-terpy)$
HOMO-1	-6.23	44.00	26.42	21.64	1.06	6.88	$d(Re) + \pi(CO) + p(Cl)$
HOMO-2	-6.40	38.71	23.12	24.13	7.47	6.57	$d(Re) + \pi(CO) + p(Cl) + \pi(4'-R-terpy)$
HOMO-3	-6.69	56.58	32.08	1.54	0.10	9.70	$d(Re) + \pi(CO)$
HOMO-4	-7.02	0.87	0.38	1.56	77.11	20.08	$\pi(4'-R-terpy)$
HOMO-5	-7.15	0.98	1.16	0.67	21.34	75.85	$\pi(4'-R-terpy)$

Table S11. The energies and characters of the selected spin-allowed electronic transitions for **1** calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Experimental		Calculated transit	ions		
absorption λ; nm (10 ⁻³ ε; M ⁻¹ cm ⁻¹)	Major contribution (%)	Character	E[eV]	λ[nm]	Oscillator strength
383.8 (22.2)	$H \rightarrow L$	ILCT/IL	2.94	421.63	0.2243
	$H-1 \rightarrow L$	MLCT/LLCT	3.06	405.25	0.1049
351.9 (21.1)	$H \rightarrow L+1$	ILCT/IL	3.51	353.63	0.2326
301.3 (31.4)	$H-2 \rightarrow L+1$	MLCT/LLCT	3.95	314.14	0.0952
	$H-5 \rightarrow L$	IL	3.97	312.32	0.1282
	$H-1 \rightarrow L+2$	MLCT/LLCT/LF	4.06	305.14	0.1010
253.3 (28.6)	$H \rightarrow L+6$	ILCT/LMCT/IL	4.68	264.74	0.1502
	$H-9 \rightarrow L$	LLCT/IL	4.75	260.80	0.1119
	$H \rightarrow L+6$	ILCT/LMCT/IL	4.79	259.04	0.0757
	$H-7 \rightarrow L+1$	IL	5.11	242.53	0.0652
221.9 (37.8)	$H-6 \rightarrow L+2$	IL	5.50	225.12	0.0597
	$H \rightarrow L+7$	LLCT/IL			
	H-5 →L+7	LLCT/IL	6.24	198.60	0.0529

Table S12. The energies and characters of the selected spin-allowed electronic transitions for **2** calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Experimental absorption	Calculated transitions						
λ; nm (10 ⁻³ ε; M ⁻¹ cm ⁻¹)	Major contribution (%)	Character	E[eV]	λ [nm]	Oscillator strength		
383.2 (22.0)	$H \rightarrow L$	MLCT/LLCT/ILCT/IL	2.93	423.6	0.0200		
	$H-1 \rightarrow L$	MLCT/LLCT	3.06	404.6	0.1939		
	$H-3 \rightarrow L$	MLCT/LLCT	2.35	370.5	0.0109		
340.2(26.8)	$H-2 \rightarrow L$	MLCT/LLCT/IL	3.50	354.7	0.1815		
	$H \rightarrow L+1$	MLCT/LLCT/ILCT/IL	3.66	338.9	0.1276		
304.2 (32.6)	$H-4 \rightarrow L$	IL	3.89	319.0	0.1655		
	$H \rightarrow L+2$	MLCT/LLCT/IL/LF	4.01	309.2	0.0639		
	$H-1 \rightarrow L+2$	MLCT/LLCT	4.02	308.2	0.1086		
	$H-2 \rightarrow L+1$	MLCT/LLCT/IL	4.08	303.8	0.1985		
253.1 (27.4)	$H-2 \rightarrow L+2$	MLCT/LLCT/IL/LF	4.53	273.4	0.0628		
	$H-3 \rightarrow L+3$	MLCT/LLCT	4.67	265.5	0.0791		
	$H-4 \rightarrow L+1$	IL	4.72	262.7	0.0736		
	$H-2 \rightarrow L+3$	MLCT/LLCT/IL/LF	4.75	261.1	0.1004		
	$H-9 \rightarrow L$	IL	5.05	245.7	0.0632		
198.0 (60.9)	$\begin{array}{c} \text{H-10} \rightarrow \text{L+1} \\ \text{H-4} \rightarrow \text{L+6} \end{array}$	ILCT IL/LMCT/LLCT	5.53	223.9	0.0584		
	$H-3 \rightarrow L+8$	IL/d-d	5.71	217.3	0.0598		
	H-11 →L+2	LLCT	6.30	196.8	0.0569		
	$H-10 \rightarrow L+4$	IL/LMCT	6.57	188.8	0.0504		
	$H \rightarrow L+15$	ILCT/ LMCT	6.60	187.2	0.0526		
	H-5 →L+8	ILCT/ LMCT	6.65	186.4	0.0577		
	H-15 →L+1	IL	6.85	180.9	0.0919		

 ε – molar absorption coefficient; H – highest occupied molecular orbital; L – lowest unoccupied molecular orbital

Table S13. The energies and characters of the selected spin-allowed electronic transitions for **3** calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Experimental	Calculated transitions						
absorption	Major	Character			Ossillatan		
λ; nm	contribution		E[eV]	λ[nm]	Oscillator		
$(10^{-3} \epsilon; M^{-1} cm^{-1})$	(%)				strength		
381.0 (4.4)	$H-1 \rightarrow L$	MLCT/LLCT	3.02	410.9	0.1763		
321.2 (13.2)	$H-2 \rightarrow L$	ILCT/MLCT/LLCT/IL	3.53	351.3	0.2253		
	$H \rightarrow L+1$	MLCT/LLCT	3.60	344.6	0.0900		
	$H-1 \rightarrow L+1$	MLCT/LLCT/ILCT/IL	3.69	335.9	0.0502		
	$H-2 \rightarrow L$	ILCT/MLCT/LLCT/IL	3.87	320.1	0.1135		
	$H \rightarrow L+2$	MLCT/LLCT	3.99	311.1	0.0546		
	$H-5 \rightarrow L$	ILCT	4.11	301.7	0.1090		
	$H-2 \rightarrow L+1$	ILCT/MLCT/LLCT/IL	4.15	298.9	0.2070		
	$H-5 \rightarrow L$	ILCT					
258.3 (12.7)	$H-2 \rightarrow L+2$	ILCT/MLCT/LLCT/IL	4.63	267.8	0.0659		
	$H-4 \rightarrow L+1$	IL	4.68	264.8	0.0778		
	$H-3 \rightarrow L+4$	LMCT/LLCT/LF	4.76	260.6	0.0697		
193.7 (149.2)	$H-4 \rightarrow L+3$	IL	5.33	232.8	0.0891		
	H-8→L+2	LLCT/IL	5.65	219.5	0.0740		
	$H-5 \rightarrow L+3$	ILCT/IL					
	$H-4 \rightarrow L+6$	IL/LLCT	5.86	211.6	0.0472		
	$H-11 \rightarrow L+2$	LLCT	6.28	197.4	0.0557		
	$H-9 \rightarrow L+6$	LLCT/IL	6.44	192.4	0.0714		

 ε – molar absorption coefficient; H – highest occupied molecular orbital; L – lowest unoccupied molecular orbital

Table S14. The energies and characters of the selected spin-allowed electronic transitions for 4 calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Experimental	Calculated transitions						
absorption λ; nm (10 ⁻³ ε; M ⁻¹ cm ⁻¹)	Major contribution (%)	Character	E[eV]	λ [nm]	Oscillator strength		
406.3 (19.8)	$H \rightarrow L$	ILCT/IL	2.69	459.6	0.8277		
	$H-1 \rightarrow L$	MLCT/LLCT	2.88	429.6	0.0372		
	$H \rightarrow L+1$	ILCT/IL	3.28	377.9	0.2479		
313.7 (14.9)	$H-2 \rightarrow L+1$	MLCT/LLCT	3.74	330.8	0.0541		
	H-4 →L	ILCT/IL	3.75	330.6	0.1390		
	$H-2 \rightarrow L+1$	MLCT/LLCT/ILCT/IL					
	$H-4 \rightarrow L$	IL/ILCT	3.83	323.0	0.0872		
	H-1→L+2	MLCT/LLCT/LMCT/LF	4.00	309.8	0.0626		
	$H \rightarrow L+3$	ILCT/IL	4.01	308.6	0.0608		
257.4 (16.3)	$H-2 \rightarrow L+5$	MLCT/LLCT/II/ILCT	4.58	270.4	0.0921		
	H-3 →L+3	MLCT/LLCT	4.70	263.4	0.0889		
	H-3 →L+4	MLCT/LLCT/LF					
	H-6 →L+1	ILCT/IL	4.84	255.9	0.0561		
	H-13 →L	LLCT	5.12	241.9	0.0532		
	H-4 →L+3	ILCT/IL	5.20	238.4	0.0884		
219.7 (23.7)	H-14 →L	IL	5.48	226.2	0.0842		
	$H-6 \rightarrow L+3$	ILCT/IL	5.53	223.8	0.0450		
	$H-10 \rightarrow L+2$	LLCT/LMCT/IL	5.58	221.9	0.0461		
	H-4 \rightarrow L+9	IL/LMCT	6.43	192.8	0.0501		

 ε – molar absorption coefficient; H – highest occupied molecular orbital; L – lowest unoccupied molecular orbital

Table S15. The energies and characters of the selected spin-allowed electronic transitions for **5** calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands.

Experimental	Calculated transitions						
absorption λ ; nm $(10^{-3} \varepsilon; M^{-1} cm^{-1})$	Major contribution (%)	Character	E[eV]	λ [nm]	Oscillator strength		
383.2 (22)	$H-1 \rightarrow L$	MLCT/LLCT/ILCT/IL	2.80	442.8	0.0217		
	$H \rightarrow L$	ILCT /IL/MLCT/LLCT					
	$H \rightarrow L$	ILCT /IL/MLCT/LLCT	2.95	419.80	0.3383		
	$H-2 \rightarrow L$	MLCT/LLCT/ILCT/IL	3.14	394.01	0.0563		
340.2(26.8)	$H-3 \rightarrow L$	ILCT/IL	3.45	359.25	0.3002		
	$H \rightarrow L+1$	ILCT /IL/MLCT/LLCT	3.52	351.45	0.0914		
304.2 (32.6)	$H-5 \rightarrow L$	IL	3.85	321.54	0.1367		
	$H-1 \rightarrow L+2$	MLCT/LLCT/ILCT/IL	3.97	311.67	0.0641		
	$H-3 \rightarrow L+1$	ILCT/IL	4.10	301.92	0.1921		
	$H-2 \rightarrow L+2$	MLCT/LLCT/ILCT/IL	4.35	285.00	0.0824		
253.1 (27.4)	$H-1 \rightarrow L+3$	MLCT/LLCT/ILCT/IL	4.55	272.49	0.0593		
	$H-2 \rightarrow L+3$	MLCT/LLCT/ILCT/IL	4.65	266.59	0.0631		
	$H-5 \rightarrow L+1$	IL	4.66	265.74	0.0799		
	$H-7 \rightarrow L+1$	IL	4.93	251.02	0.0856		
221.8 (38.7)	$H-4 \rightarrow L+6$	MLCT//LLCT	5.19	238.59	0.0717		
	$H-5 \rightarrow L+3$	IL	5.31	233.40	0.0889		
	$H-10 \rightarrow L+1$	ILCT/IL	5.52	224.56	0.0586		
	$H-9 \rightarrow L+2$	LLCT/IL	5.64	219.59	0.0513		
	$H-2 \rightarrow L+7$	MLCT/LLCT/ILCT/IL	5.72	216.62	0.0796		
198.0 (80)	$H-5 \rightarrow L+6$	IL/LLCT	5.85	211.80	0.0550		
	$H-3 \rightarrow L+8$	ILCT/LLCT/IL	5.98	207.11	0.1238		
	$H-3 \rightarrow L+8$	ILCT/LLCT/IL	6.34	195.39	0.0638		

 ε – molar absorption coefficient; H – highest occupied molecular orbital; L – lowest unoccupied molecular orbital

Table S16. The energies and characters of the selected spin-allowed electronic transitions for **6** calculated with the TDDFT/B3LYP method, together with assignment to the experimental absorption bands

Experimental	Calculated transitions						
absorption λ; nm	Major contribution	Character	E[eV]	λ [nm]	Oscillator		
$(10^{-3} \epsilon; M^{-1} cm^{-1})$	(%)				strength		
386.9 (9.0)	$H \rightarrow L$	ILCT/IL	2.76	448.72	0.4151		
	$H-1 \rightarrow L$	MLCT/LLCT	2.91	426.80	0.0745		
341.0 (12.0)	$H \rightarrow L+1$	ILCT/IL	3.34	371.34	0.2875		
	$H-2 \rightarrow L+1$	MLCT/LLCT/IL	3.82	324.48	0.0541		
305.2 (15.2)	$H-4 \rightarrow L$	ILCT/IL	3.86	320.93	0.1693		
	$H-1 \rightarrow L+2$	MLCT/LLCT	4.03	307.62	0.1339		
255.3 (12.5)	$H-5 \rightarrow L+1$	IL/ILCT	4.74	261.56	0.0800		
221.5 (18.8)	$H-4 \rightarrow L+3$	ILCT/IL	5.32	233.06	0.0911		
	$H-5 \rightarrow L+3$	IL/ILCT					

 ϵ – molar absorption coefficient; H – highest occupied molecular orbital; L – lowest unoccupied molecular orbital

E [eV]	λ [nm]	f	%	Character				
B3LYP								
2.70	459.6	0.8281	96	$140 \rightarrow 141$	$H \rightarrow L$	$\pi_{\text{R/terpy}} \rightarrow \pi^*_{\text{terpy/R}}$	ILCT	
2.89	429.6	0.0372	96	$139 \rightarrow 141$	$H-1 \rightarrow L$	$d \rightarrow \pi^*_{terpy/R}$	MLCT	
				BP8	6			
2.08	595.7	0.4417	85	$140 \rightarrow 141$	$H \rightarrow L$	$\pi_{R/terpy} \rightarrow \pi^*_{terpy/R}$	ILCT	
2.20	564.7	0.0171	98	$139 \rightarrow 141$	$\text{H-1} \rightarrow \text{L}$	$d \rightarrow \pi^*_{terpy/R}$	MLCT	
				ωB9	97			
3.92	316.6	1.2055	68	$140 \rightarrow 141$	$H \rightarrow L$	$\pi_{R/Tterpv} \rightarrow \pi^*_{terpv/R}$	ILCT	
4.13	300.3	0.0274	41	$139 \rightarrow 141$	$\text{H-1} \rightarrow \text{L}$	$d \rightarrow \pi^*_{terpy/R}$	MLCT	
			21	$139 \rightarrow 146$	$\text{H-1} \rightarrow \text{L+6}$	$d \rightarrow \pi^*_{terpy}/_{CO}$	MLCT	
				ω B 9	7x			
3.79	326.9	1.2066	70	$140 \rightarrow 141$	$\mathrm{H} \rightarrow \mathrm{L}$	$\pi_{R/terpy} \rightarrow \pi^*_{terpy/R}$	ILCT	
			10	$140 \rightarrow 142$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$\pi_{\text{R/terpy}} \rightarrow \pi^*_{\text{terpy}}$	ILCT	
4.02	308.1	0.0340	57	$139 \rightarrow 141$	$\text{H-1} \rightarrow \text{L}$	$d \rightarrow \pi^*_{terpy/R}$	MLCT	
			14	$139 \rightarrow 146$	$H-1 \rightarrow L+6$	$d \rightarrow \pi^*_{TP}/_{CO}$	MLCT	
				CAM-B	3LYP			
3.43	361.2	1.1193	81	$140 \rightarrow 141$	$\mathrm{H} \rightarrow \mathrm{L}$	$\pi_R \rightarrow \pi^*_{terpy/R}$	ILCT	
3.64	340.4	0.0585	83	$139 \rightarrow 141$	$H-1 \rightarrow L$	$d \rightarrow \pi^*_{terpy/R}$	MLCT	
LC-BLYP								
4.00	310.3	1.1841	67	$140 \rightarrow 141$	$\mathrm{H} \rightarrow \mathrm{L}$	$\pi_R \rightarrow \pi^*_{terpy/R}$	ILCT	
			10	$140 \rightarrow 142$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$\pi_R \rightarrow \pi^*_{terpy}$	ILCT	
4.19	295.6	0.0463	42	$139 \rightarrow 141$	$\text{H-1} \rightarrow \text{L}$	$d \rightarrow \pi^*_{terpy/R}$	MLCT	
			20	$139 \rightarrow 146$	$H-1 \rightarrow L+6$	$d \rightarrow \pi^*_{terpy}/_{CO}$	MLCT	
	E [eV] 2.70 2.89 2.08 2.20 3.92 4.13 3.79 4.02 3.43 3.64 4.00 4.19	E [eV] λ [nm]2.70459.62.89429.62.08595.72.20564.73.92316.64.13300.33.79326.94.02308.13.64340.44.00310.34.19295.6	E [eV] λ [nm]f2.70459.60.82812.89429.60.03722.08595.70.44172.00564.70.01712.01564.70.01713.92316.61.20554.13300.30.02743.79326.91.20664.02308.10.03403.64361.21.11933.64340.40.05854.00310.31.18414.19295.60.0463	$\begin{array}{c ccccccc} & & f & & & & \\ \hline E \ [eV] & \lambda \ [nm] & f & & & \\ \hline & & & & & \\ \hline 2.70 & 459.6 & 0.8281 & 96 \\ \hline 2.89 & 429.6 & 0.0372 & 96 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E [eV] λ [nm] f % Character 2.70 459.6 0.8281 96 140 \rightarrow 141 H \rightarrow L 2.89 429.6 0.0372 96 139 \rightarrow 141 H \rightarrow L 2.89 429.6 0.0372 96 139 \rightarrow 141 H \rightarrow L 2.08 595.7 0.4417 85 140 \rightarrow 141 H \rightarrow L 2.00 564.7 0.0171 98 139 \rightarrow 141 H \rightarrow L 2.20 564.7 0.0171 98 139 \rightarrow 141 H \rightarrow L 3.92 316.6 1.2055 68 140 \rightarrow 141 H \rightarrow L 4.13 300.3 0.0274 41 139 \rightarrow 141 H \rightarrow L 4.13 300.3 0.0274 41 139 \rightarrow 146 H \rightarrow L \rightarrow L 4.13 300.3 0.0274 41 139 \rightarrow 146 H \rightarrow L \rightarrow L \rightarrow L 4.02 308.1 0.0340 57 139 \rightarrow 141 H \rightarrow L 4.02 308.1 0.0340 57 139 \rightarrow 141 H \rightarrow L 3.64 340.4 0.0585 83	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Table S17. The energies and characters of the of two lowest vertical electronic transitions for 4 complex obtained in TDDFT calculations with using different functionals.^a

^{a)} B3LYP - Becke, 3-parameter, Lee-Yang-Parr hybrid GGA exchange-correlation functional, BP86 –Becke 1988, Perdew 86 gradient-corrected exchange-correlation functional, ω B97 – long range corrected Becke 1997 GGA exchange-correlation functional, ω B97x – long range corrected hybrid Becke 1997 GGA exchange-correlation functional, CAM-B3LYP - long range corrected B3LYP functional, LC-BLYP - long range corrected Becke's 1988 exchange functional with the correlation functional by Lee, Yang, and Parr.

Figure S1. A view of the crystal packing showing intermolecular π - π stacking interactions for 2 and 3.

Figure S2. 1D supramolecular network of **4** with marked O–H•••O and O–H•••Cl hydrogen bonds (a); A view of the pairing of the chains showing the π - π stacking between the pyridyl and thiophene rings of neighbouring 4'-R⁴-terpy ligands.

Figure S3. Experimental (black) and calculated (red) electronic absorption spectra of 1-6 in MeCN solution.

Complex	λ _{cal} [nm]	λ_{exp} [nm]		Hole	Electron
1	421.6	383.8	S ₁ W=0.993		
	405.2	-	S ₂ W=0.990		
2	404.6	383.2	S ₂ W=0.991		
3	410.9	381.0	S ₂ W=0.990		
4	459.6	406.3	S ₁ W=0.994		
	429.6		S ₂ W=0.996		

Figure S4. Natural transition orbitals (NTOs) of complexes **1-6** illustrating the nature of optically active singlet excited states in the absorption bands.

Figure S5. Excitation and emission spectra together with PL lifetime curves for **1-6** in CH₂Cl₂, CHCl₃, MeCN and in solid state.

Figure S6. Isodensity surface plots of the HSOMO and LSOMO for the complexes 1-6 at their T₁ TDDFT state geometry. Blue and grey colours show regions of positive and negative spin density values, respectively.

Figure S7. X- ray diffraction patterns of blend with 15 % of 1

Figure S8. AFM images (10 μ m x 10 μ m) of 15% doped PVK with (a) [ReCl(CO)₃(4'-R¹terpy- κ^2 N)]), (b) [ReCl(CO)₃(4'-R⁴terpy- κ^2 N)] (c) [ReCl(CO)₃(4'-R⁶terpy- κ^2 N)] and (d) pure PVK film in devices.