DNA binding properties, histidine interaction and cytotoxicity studies of water soluble ruthenium(II) terpyridine complexes.

Dejan Lazića,^a Aleksandar Arsenijević,^a Ralph Puchta,^{c,d} Živadin D. Bugarčić^b and Ana

Rilak*^b

^a Faculty of Medicine, Centre for Molecular Medicine and Stem Cell Research, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia

^b Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja

Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia

^c Institute for Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.

^d Computer Chemistry Center, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany

*Corresponding author: Dr. Ana Rilak Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12 Tel: +381(0)34300262 Fax: +381(0)34335040 e-mail: anarilak@kg.ac.rs

Fig. S1. ¹H-¹H COSY NMR spectrum of complex 4 in a mixture of acetone- d^6/D_2O (6 : 1) at 298 K.

Fig. S2. UV-Vis spectrum of complex 4 $(3 \times 10^{-5} \text{M})$ in acetonitrile.

Fig. S3. Time evolution of UV-Vis spectra during the interaction of the complexes A) [Ru(Cl-tpy)(en)Cl][Cl] (1) and B) [Ru(Cl-tpy)(dach)Cl][Cl] (2) with L-His in 25 mM Hepes buffer containing 30 mM NaCl (pH 7.4) at 310 K.

Fig. S4. Time evolution of UV-Vis difference spectra during the interaction of the complexes A) [Ru(Cl-tpy)(en)Cl][Cl] (1) and B) [Ru(Cl-tpy)(dach)Cl][Cl] (2) with L-His in 25 mM Hepes buffer containing 30 mM NaCl (pH 7.4) at 310 K. $\Delta A = A_t - A_0$, where A_t = absorbance at time *t* and A_0 = absorbance at the time at which the first spectrum was recorded.

Fig. S5. The change of absorbance at 401 nm of the $[Ru(Cl-tpy)(en)Cl]^+$ (1) complex *vs.* $[Cl^-]$ in 0.1M NaClO₄ at 310 K.

Fig. S6. *Pseudo* first-order rate constants, k_{obsd} , plotted as a function of ligand concentration for the substitution reaction of $[Ru(Cl-tpy)(dach)Cl]^+$ (2) with L-His in 25 mM Hepes buffer (30 mM NaCl, pH 7.4).

Fig. S7. Eyring plot for the reactions of complex **1** with L-His, at pH 7.40 in 25 mM Hepes buffer and 30 mM NaCl.

Fig. S8. ¹H NMR spectra of $[Ru(Cl-tpy)(en)H_2O)]^{2+}$ (**1a**, 10 mM) at various time intervals after addition of L-His (1 eq, pH = 5.35, 295 K).

0.0 kcal/mol (0.0 kcal/mol)

5.4 kcal/mol (4.5 kcal/mol)

[Ru(Cl-tpy)(en)(4-methylimidazole-N3)]²⁺

0.0 kcal/mol (0.0 kcal/mol)

[Ru(Cl-tpy)(dach)(4-methylimidazole-*NI*)]²⁺

5.4 kcal/mol (4.3 kcal/mol)

[Ru(Cl-tpy)(dach)(4-methylimidazole-N3)]²⁺

Fig. S9. Calculated (B3LYP/LANL2DZp) isomeric structures and energies (B3LYP/LANL2DZp + ZPE((B3LYP/LANL2DZp)) of [Ru(Cl-tpy)(en)(4methylimidazole)]²⁺ and [Ru(Cl-tpy)(dach)(4-methylimidazole)]²⁺. Values in brackets: B3LYP(CPCM)/LANL2DZp//B3LYP/LANL2DZp + ZPE(B3LYP/LANL2DZp).

0.0 kcal/mol

N1- coordinated L-His in [Ru(Cl-tpy)(dach)(L-His)]²⁺

-1.0 kcal/mol

3.8 kcal/mol

N3- coordinated L-His in [Ru(Cl-tpy)(dach)(L-His)]²⁺ with and without an inner molecular hydrogen bond

Fig. S10. Calculated (B3LYP(CPCM)/LANL2DZp) N1- and N3 bound isomeric structures and energies (B3LYP(CPCM)/LANL2DZp + ZPE(B3LYP(CPCM)/LANL2DZp)) of $[Ru(Cl-tpy)(dach)(L-His)]^{2+}$. In the case of the N3-coordinated species rotamers with and without an inner molecular hydrogen bond is considered.

DNA-binding studies

Calculation of DNA-binding constants

In order to compare quantitatively the binding strength of the complexes, the intrinsic binding constants K_b were determined by monitoring the changes in absorption at the MLCT band with increasing concentration of CT DNA using the following equation (1)^{S1}

$$[DNA]/(\varepsilon_{A} - \varepsilon_{f}) = [DNA]/(\varepsilon_{b} - \varepsilon_{f}) + 1/[K_{b}(\varepsilon_{b} - \varepsilon_{f})]$$
(S1)

 $K_{\rm b}$ is given by the ratio of slope to the *y* intercept in plots [DNA]/($\epsilon_{\rm A} - \epsilon_{\rm f}$) versus [DNA] (Fig. S12), where [DNA] is the concentration of DNA in base pairs, $\epsilon_{\rm A} = A_{\rm obsd}$ /[complex], $\epsilon_{\rm f}$ is the extinction coefficient for the unbound complex and $\epsilon_{\rm b}$ is the extinction coefficient for the complex in the fully bound form.

Stern-Volmer equation for EB competitive studies

The relative binding of complexes to CT-DNA was determined by calculating the quenching constant (K_{sv}) from the slopes of straight lines obtained from Stern-Volmer Eq. (2)^{S2}:

$$I_0/I = 1 + K_{sv}[Q]$$
 (S2)

where I_0 and I are the emission intensities in the absence and the presence of the quencher (complexes 1 and 2), respectively, [Q] is the total concentration of quencher, K_{sv} is the Stern-Volmer quenching constant which can be obtained from the slope of the plot of I_0/I *versus* [Q] (Fig. 6).

References

S1. A. M. Pyle, J. P. Rehmann, R. Meshoyrer, C. V. Kumar, N. J. Turro and J. K. Barton, *J. Am. Chem. Soc.*, 1989, **111**, 3051-3058.

S2. R. Lakowicz and G.Weber, Biochemistry, 1973, 12, 4161-4170.

Fig. S11. Absorption spectra of the complexes **1** (left) and **2** (right) in Tris-HCl buffer upon addition of calf thymus DNA. [Ru] = 1.25×10^{-5} M, [DNA] = (0.12-1.25) x 10^{-4} M. Arrow shows the absorbance changing upon increasing DNA concentrations. Insets: spectral changes of **1** and **2** ranging between 200 and 300 nm.

Fig. S12. Plots of [DNA]/ $(\epsilon_A - \epsilon_f)$ versus [DNA] for the complexes 1 (top) and 2 (bottom).

Fig. S13. Relative viskosity $(\eta/\eta_0)^{1/3}$ of CT DNA (0.01 mM) in buffer solution (150 mM NaCl and 10 mM Tris-HCl at pH 7.4) in the presence of the complexes **1** and **2** at increasing amounts (*r*).

Table S1. Observed *pseudo*-first order rate constants as a function of ligand concentration and temperature for the substitution reactions between [Ru(Cl-tpy)(en)Cl][Cl] (1) and L-His in 25 mM Hepes buffer containing 30 mM NaCl (pH=7.4).

λ/nm	T/K	$10^{3} C_{L}/M$	$10^4 k_{\rm obsd}/{\rm s}^{-1}$
487	288	4.00	0.96(2) ^a
		3.00	0.90(3)
		2.52	0.50(3)
		2.20	0.42(2)
		1.00	0.32(2)
		0.60	0.30(3)
	298	4.00	1.90(2)
		3.00	1.80(2)
		2.52	1.71(2)
		2.20	1.52(3)
		1.00	0.90(3)
		0.60	0.70(3)
	310	4.00	3.80(2)
		3.00	3.10(2)
		2.52	2.80(2)
		2.20	2.51(3)
		1.00	1.90(3)
		0.60	1.30(3)

^aNumber of runs in parenthesis

Table S2. Observed *pseudo*-first order rate constants as a function of ligand concentration for the substitution reactions between [Ru(Cl-tpy)(dach)Cl][Cl] (**2**) and L-His in 25 mM Hepes buffer containing 30 mM NaCl (pH=7.4).

λ(nm)	T(K)	10 ³ C _L /M	$10^4 k_{\rm obsd}/{\rm s}^{-1}$
638	310	4.00	2.53(2) ^a
		3.00	2.31(2)
		2.52	2.11(3)
		2.20	1.91(3)
		1.00	1.56(3)
		0.60	1.30(3)

^a Number of runs in parenthesis

Species	δ (H6/H6")	δ (H2 _{L-His})	δ (H5 _{L-His})
1a	9.01		
2a	9.06/8.96		
L-His		8.01	7.15
5a	n.a.	6.75	n.a.
5b	8.95	6.71	6.07
L-His		7.86	7.09
6a	n.a.	6.74	n.a.
6b	9.04/8.89	6.70	6.07

 Table S3. Selected chemical shifts for the investigated ligands and the products from their

 reactions with 1 and 2.

n.a. = not assigned