Electronic Supplementary Information

Tin-Catalyzed Hydrophosphination of Alkenes

John P W. Stelmach, Christine A. Bange, and Rory Waterman†

Department of Chemistry, University of Vermont, Cook Physical Sciences, Burlington, Vermont, 05405, United States

rory.waterman@uvm.edu

Figures S1 – S26: Hydrophosphination reactions ran with Cp*₂SnCl₂ under a hydrogen atmosphere.
Figures S27 – S28: Hydrophosphination reactions ran with Cp*₂SnCl₂ under a nitrogen atmosphere.
Figures S29 – S36: Hydrophosphination reactions ran with Ph₂SnCl₂ under a hydrogen atmosphere.
Figures S37 – S38: Hydrophosphination reactions ran with Ph₂SnCl₂ under a nitrogen atmosphere.
Figures S39 – S44: Hydrophosphination reactions ran with Cp*₂Sn under a nitrogen atmosphere.
Figures S45 – S47: Dehydrocoupling reactions with Cp*₂SnCl₂, Ph₂SnCl₂, and Cp*₂Sn.
Figures S48 – S49: Stoichiometric reaction with Ph₂PH and 2-vinyl pyridine under a hydrogen atmosphere.
Figures S50 – S51: GCMS spectra.
Figures S52 – S567: Hydrophosphination reactions ran with B(C₆F₅)₃ under a nitrogen atmosphere at 100°C.
Figures S68 – S69: Competitive hydrophosphination reaction ran with Cp*₂SnCl₂, Ph₂PH, Ph₂PD, Styrene, under a hydrogen atmosphere.
Figures S70 – S85: Hydrophosphination reactions ran with under a nitrogen atmosphere at 100°C.
Figure S1: Cp*₂SnCl₂ + Ph₂PH + Vinyl Pyridine, 31P NMR spectrum, final

Figure S2: Cp*₂SnCl₂ + Ph₂PH + Vinyl Pyridine, 31P{1H} NMR spectrum, final
Figure S3: Cp*₂SnCl₂ + Ph₂PH + 2-Vinyl Pyridine, ¹H NMR spectrum, final

Figure S4: Cp*₂SnCl₂ + Ph₂PH + acrylonitrile, ³¹P NMR spectrum, final
Figure S5: Cp*2SnCl2 + Ph2PH + acrylonitrile, ^1H NMR spectrum, final

Figure S6: Cp*2SnCl2 + Ph2PH + 4-bromo styrene, ^31P NMR spectrum, final
Figure S7: Cp*$_2$SnCl$_2$ + Ph$_2$PH + 4-bromo styrene, 31P{H} NMR spectrum, final

Figure S8: Cp*$_2$Sn Cl$_2$ + Ph$_2$PH + 4-bromo styrene, 1H NMR spectrum, final
Figure S9: Cp*₂SnCl₂ + Ph₂PH + ethyl acrylate, ³¹P NMR spectrum, final

Figure S10: Cp*₂SnCl₂ + Ph₂PH + ethyl acrylate, ³¹P{¹H} NMR spectrum, final
Figure S11: Cp*₂SnCl₂ + Ph₂PH + ethyl acylate, ^1H NMR spectrum, final

Figure S12: Cp*₂SnCl₂ + Ph₂PH + 4-trifluoromethyl styrene, ^31P NMR spectrum, final
Figure S13: Cp*₂SnCl₂ + Ph₂PH + 4-trifluoromethyl styrene, 31P{¹H} NMR spectrum, final

Figure S14: Cp*₂SnCl₂ + Ph₂PH + 4-trifluoromethyl styrene, ¹H NMR spectrum, final
Figure S15: Cp*₂SnCl₂ + Ph₂PH + 4-methyl styrene, 31P NMR spectrum, final

Figure S16: Cp*₂SnCl₂ + Ph₂PH + 4-methyl styrene, 31P{¹H} NMR spectrum, final
Figure S17: \(\text{Cp}^* \text{SnCl}_2 + \text{Ph}_2\text{PH} + 4\text{-methyl styrene} \), \(^1\text{H} \text{NMR spectrum}, \text{final} \)

Figure S18: \(\text{Cp}^* \text{SnCl}_2 + \text{Ph}_2\text{PH} + \text{phenyl acetylene} \), \(^{31}\text{P} \text{NMR spectrum}, \text{final} \)
Figure S19: \(\text{Cp}^\ast \text{SnCl}_2 + \text{Ph}_2 \text{PH} + \text{phenyl acetylene, } ^{31}\text{P}[^1\text{H}] \) NMR spectrum, final

Figure S20: \(\text{Cp}^\ast \text{SnCl}_2 + \text{Ph}_2 \text{PH} + \text{phenyl acetylene, } ^1\text{H} \) NMR spectrum, final
Figure S21: Cp*₂SnCl₂ + Ph₂PH + styrene, 31P NMR spectrum, final

Figure S22: Cp*₂SnCl₂ + Ph₂PH + styrene, 31P{¹H} NMR spectrum, final
Figure S23: Cp*₂SnCl₂ + Ph₂PH + styrene, ¹H NMR spectrum, final

Figure S24: Cp*₂SnCl₂ + Ph₂PH + vinyl ethyl ether, ³¹P NMR spectrum, final
Figure S25: \(\text{Cp}^*\text{SnCl}_2 + \text{Ph}_2\text{PH} + \text{vinyl ether}, \ ^{31}\text{P}[^1\text{H}] \text{NMR spectrum, final}\)

![Figure S25](image1.png)

Figure S26: \(\text{Cp}^*\text{SnCl}_2 + \text{Ph}_2\text{PH} + \text{vinyl ether}, \ ^1\text{H} \text{NMR spectrum, final}\)

![Figure S26](image2.png)
Figure S27: Cp*₂SnCl₂ + Ph₂PH + styrene, ³¹P NMR spectrum, final

Figure S28: Cp*₂SnCl₂ + Ph₂PH + styrene, ¹H NMR spectrum, final
Figure S29: Ph$_2$SnCl$_2$ + Ph$_2$PH + acrylonitrile, 31P NMR spectrum, final

Figure S30: Ph$_2$Sn Cl$_2$ + Ph$_2$PH + acrylonitrile, 1H NMR spectrum, final
Figure S31: Ph$_2$SnCl$_2$ + Ph$_2$PH + ethyl acrylate, 31P NMR spectrum, final

Figure S32: Ph$_2$SnCl$_2$ + Ph$_2$PH + ethyl acrylate, 1H NMR spectrum, final
Figure S33: Ph$_2$SnCl$_2$ + Ph$_2$PH + vinyl ethyl ether, 31P NMR spectrum, final

Figure S34: Ph$_2$Sn Cl$_2$ + Ph$_2$PH + vinyl ethyl ether, 1H NMR spectrum, final
Figure S35: Ph$_2$SnCl$_2$ + Ph$_2$PH + 2-vinyl pyridine, 31P NMR spectrum, final

Figure S36: Ph$_2$Sn Cl$_2$ + Ph$_2$PH + 2-vinyl pyridine, 1H NMR spectrum, final
Figure S37: \(\text{Ph}_2\text{SnCl}_2 + \text{Ph}_2\text{PH} + 2\)-vinyl pyridine, \(^{31}\text{P}\) NMR spectrum, final

Figure S38: \(\text{Ph}_2\text{SnCl}_2 + \text{Ph}_2\text{PH} + 2\)-vinyl pyridine, \(^1\text{H}\) NMR spectrum, final
Figure S39: Cp*₂Sn + Ph₂PH + acrylonitrile, ³¹P NMR spectrum, final

Figure S40: Cp*₂Sn + Ph₂PH + acrylonitrile, ¹H NMR spectrum, final
Figure S41: Cp*₂Sn + Ph₂PH + styrene, 31P NMR spectrum, final

Figure S42: Cp*₂Sn + Ph₂PH + styrene, 1H NMR spectrum, final
Figure S43: Cp*₂Sn + Ph₂PH + 2-vinyl pyridine, ³¹P NMR spectrum, final

Figure S44: Cp*₂Sn + Ph₂PH + 2-vinyl pyridine, ¹H NMR spectrum, final
Figure S45: Cp*₄Sn + Ph₂PH, 31P NMR spectrum, final

Figure S46: Cp*₂SnCl₂ + Ph₂PH, 31P NMR spectrum, final
Figure S47: Ph$_2$SnCl$_2$ + Ph$_2$PH, 31P NMR spectrum, final

Figure S48: Ph$_2$PH + 2-vinyl pyridine, 31P NMR spectrum, final
Figure S49: Ph$_2$PH + 2-vinyl pyridine, 1H NMR spectrum, final
Figure S50: GC – MS (EI) of (4-bromophenylethyl) diphenylphosphine
Figure S51: GC – MS (El) of (4-trifluoromethylphenylethyl) diphenylphosphine
Figure S52: $\text{B(C}_6\text{F}_5)_3 + \text{Ph}_2\text{PH} + \text{styrene} + \text{N}_2$ at 65 °C for 18 hours, $^{31}\text{P NMR}$, final

Figure S53: $\text{B(C}_6\text{F}_5)_3 + \text{Ph}_2\text{PH} + \text{styrene} + \text{N}_2$ at 100 °C for 20 hours, $^{31}\text{P NMR}$, final
Figure S54: B(C₆F₅)₃ + Ph₂PH + 4-bromo styrene + N₂ at 100 °C for 18 hours, \(^{31}\)P NMR, final

Figure S55: B(C₆F₅)₃ + Ph₂PH + 4-Bromo Styrene + N₂ at 100 °C for 18 hours, \(^{1}\)H NMR, final
Figure S56: B(C₆F₅)₃ + Ph₂PH + 4-methyl styrene + N₂ at 100 °C for 18 hours, ³¹P NMR, final

Figure S57: B(C₆F₅)₃ + Ph₂PH + 4-methyl styrene + N₂ at 100 °C for 18 hours, ¹H NMR, final
Figure S58: B(C₆F₅)₃ + Ph₂PH + 4-trifluoromethyl styrene + N₂ at 100 °C for 18 hours, ³¹P NMR, final

Figure S59: B(C₆F₅)₃ + Ph₂PH + 4-trifluoromethyl styrene + N₂ at 100 °C for 18 hours, ¹H NMR, final
Figure S60: B(C_6F_3)_3 + Ph_2PH + acrylonitrile + N_2 at 100 °C for 18 hours, ^31P NMR, final

Figure S61: B(C_6F_3)_3 + Ph_2PH + acrylonitrile + N_2 at 100 °C for 18 hours, ^1H NMR, final
Figure S62: B(C₆F₅)₃ + Ph₂PH + 2-vinyl pyridine + N₂ at 100 °C for 18 hours, ³¹P NMR, final

Figure S63: B(C₆F₅)₃ + Ph₂PH + 2-vinyl pyridine + N₂ at 100 °C for 18 hours, ¹H NMR, final
Figure S64: $\text{B(C}_6\text{F}_5\text{)}_3 + \text{Ph}_2\text{PH} + \text{vinyl ethyl ether} + \text{N}_2$ at 100 °C for 18 hours, 31P NMR, final

Figure S65: $\text{B(C}_6\text{F}_5\text{)}_3 + \text{Ph}_2\text{PH} + \text{vinyl ethyl ether} + \text{N}_2$ at 100 °C for 18 hours, 1H NMR, final
Figure S66: $\text{B(C}_6\text{F}_5)_3 + \text{Ph}_2\text{PH} + \text{ethyl acrylate} + \text{N}_2$ at 100 °C for 18 hours, $^{31}\text{P} \text{NMR}$, final

Figure S67: $\text{B(C}_6\text{F}_5)_3 + \text{Ph}_2\text{PH} + \text{ethyl acrylate} + \text{N}_2$ at 100 °C for 18 hours, $^1\text{H} \text{NMR}$, final
Figure S68: \(\text{C}_{2}\text{SnCl}_2 + \text{Ph}_2\text{PH} + \text{Ph}_2\text{PD} + \text{Styrene} + \text{H}_2,^3\text{P NMR, final} \)

Figure S69: \(\text{C}_{2}\text{SnCl}_2 + \text{Ph}_2\text{PH} + \text{Ph}_2\text{PD} + \text{Styrene} + \text{H}_2,^1\text{H NMR, final} \)
Figure S70: Ph$_2$PH + styrene + N$_2$ at 100 °C for 18 hours, 31P NMR, final

Figure S71: Ph$_2$PH + styrene + N$_2$ at 100 °C for 18 hours, 1H NMR, final
Figure S72: Ph$_2$PH + 4-bromo styrene + N$_2$ at 100 °C for 18 hours, 31P NMR, final

Figure S73: Ph$_2$PH + 4-Bromo Styrene + N$_2$ at 100 °C for 18 hours, 1H NMR, final
Figure S74: Ph$_2$PH + 4-methyl styrene + N$_2$ at 100 °C for 18 hours, 31P NMR, final

Figure S75: Ph$_2$PH + 4-methyl styrene + N$_2$ at 100 °C for 18 hours, 1H NMR, final
Figure S76: Ph₂PH + 4-trifluoromethyl styrene + N₂ at 100 °C for 18 hours, 31P NMR, final

Figure S77: Ph₂PH + 4-trifluoromethyl styrene + N₂ at 100 °C for 18 hours, 1H NMR, final
Figure S78: Ph$_2$PH + acrylonitrile + N$_2$ at 100 °C for 18 hours, 31P NMR, final

Figure S79: Ph$_2$PH + acrylonitrile + N$_2$ at 100 °C for 18 hours, 1H NMR, final
Figure S80: Ph$_2$PH + 2-vinyl pyridine + N$_2$ at 100 °C for 18 hours, 31P NMR, final

Figure S81: Ph$_2$PH + 2-vinyl pyridine + N$_2$ at 100 °C for 18 hours, 1H NMR, final
Figure S82: Ph₂PH + vinyl ethyl ether + N₂ at 100 °C for 18 hours, 31P NMR, final

Figure S83: Ph₂PH + vinyl ethyl ether + N₂ at 100 °C for 18 hours, 1H NMR, final
Figure S84: Ph₂PH + ethyl acrylate + N₂ at 100 °C for 18 hours, ³¹P NMR, final

Figure S85: Ph₂PH + ethyl acrylate + N₂ at 100 °C for 18 hours, ¹H NMR,