The Electronic Supporting Information (ESI)

for

Efficient elimination of caffeine from water using Oxone activated by a magnetic and recyclable cobalt/carbon nanocomposite derived from ZIF-67

Kun-Yi Andrew Lin and Bo-Chau Chen

Department of Environmental Engineering, National Chung Hsing University,

250 Kuo-Kuang Road, Taichung, Taiwan, R.O.C.

*Corresponding Author. Tel: +886-4-22854709, E-mail address: linky@nchu.edu.tw

(Kun-Yi Andrew Lin)
Fig. S1. TEM images of a. ZIF-67 and b. CCN. The scale bar is 500 nm.
Fig. S2. N 1s core-level XPS spectrum of CCN.

Fig. S3. Thermogravimetric analyses of ZIF-67 and CCN in air or N₂.
Fig. S4. a. N$_2$ sorption and desorption isotherms and b. the pore size distribution of the precursor of CCN, ZIF-67.

Fig. S5. a. N$_2$ sorption and desorption isotherms and b. the pore size distribution of CCN.
Fig. S6. Elimination of caffeine using CCN-activated Oxone: a. UV-Vis spectral variation; b. total organic carbon (TOC) change during the degradation.
Fig. S7. Illustrations showing a. the activation of PMS by CCN to generate PMS and sulfate radicals; b. the formation of sulfate radicals derived from the self-reaction of PMS radicals.
Fig. S8. A plot for determining the activation energy E_a and the temperature-independent factor k.
Fig. S9. GC-MS spectrograms of identified intermediates during the caffeine degradation: a. P1, b. P2, c. P3, d. P4 and e. P5-1 and P5-2.