Supporting Information

Ethylene Glycol-Assisted Coating of Titania on Nanoparticles

Michael Dahl, Fernando Castaneda, Ji Bong Joo, Victor Reyes, James Goebl, and Yadong Yin*

Department of Chemistry, University of California, Riverside, CA 92521 (USA)

*E-mail: yadong.yin@ucr.edu

Figure S1. UV-Vis absorption spectra of (a) silver nanoplates and (b) gold nanorods before and after coating with titanium glycolate.
Figure S2. UV-Vis absorption spectra of gold nanorods indicating peak position changes after coating with different thicknesses of titanium glycolate.

Figure S3. TEM images of resorcinol-formaldehyde polymer sphere (a) before coating (b) after a single coating and (c) after four coatings with titanium glycolate precursor.
Figure S4. TEM images of SiO$_2$ and RF polymer microspheres before (a,c) and after (b,d) coating with titanium glycolate.

Figure S5. Enlarged Raman spectra of titanium glycolate coatings on gold nanorods after refluxing, indicating anatase crystal phase. $\lambda_{ex} = 532$ nm.
Figure S6. Low magnification TEM images of hollow TiO$_2$ shells obtained by calcination of SiO$_2$@titanium glycolate, followed by etching. Samples shown were calcined at (a) 400, (b) 600, (c) 800, and (d) 900 °C.

Figure S7. N$_2$ physisorption isotherm for hollow TiO$_2$ sample calcined at 700 °C.