Supplementary Information

Ru(II)-dmso Complexes containing Azole-based Ligands: Synthesis, Linkage Isomerism and Catalytic Behaviour

Íngrid Ferrer, Xavier Fontrodona, Montserrat Rodríguez* and Isabel Romero*
Departament de Química y Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain.
Keywords: ruthenium /dmso complexes/ azole-based ligands / linkage isomerism / hydration catalysis.

Table of Contents

Table S1. Crystallographic data for complexes 2-5 and 6'.
Table S2. Formulas used for the calculation of rate (k) and equilibrium (K) constants.
Scheme S1. Ru-dmso complexes gathered in entries 3-6 of Table 2.
Figure S1. NMR spectra of 2, 400 MHz, CD₂Cl₂: a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC, f) ¹H-¹³C HMBC
Figure S2. NMR spectra of 3, 300 MHz, CD₂Cl₂: a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC, f) ¹H-¹³C HMBC
Figure S3. NMR spectra of 4, 300 MHz, CD₂Cl₂: a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC, f) ¹H-¹³C HMBC
Figure S4. NMR spectra of 5, 300 MHz, CD₂Cl₂: a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC, f) ¹H-¹³C HMBC, g) ¹H-NMR with presence of the minor isomer.
Figure S5. UV-visible spectra of 2 (blue), 3 (green), 4 (grey) and 5 (red) in CH₂Cl₂
Figure S6. CV of a) 3 (blue), 4 (black) and 5 (orange) in CH₃CN + 0.1 M TBAH.
Figure S7. CV registered in CH₂Cl₂ (TBAH, 0.1M) vs Ag/AgCl starting the scanning potential at Eᵢₙᵢₜ = 0.6 for 2 and 0 V for 6 at scan rates between 0.20 and 8 V/s (equilibration time = 2 s). a) complex 2, b) complex 6.
Figure S8. Plot of iᵢ/½i vs. l/½ to obtain kIII₂O:S for complex 2.
Figure S9. Plot of iᵢ/½i vs. l/½ to obtain KIII₂S:O for complex 6.
Figure S10. Plot of ½i/½ vs. iᵢ/½ to obtain kIIIₒ→S and kIII₂S→O for complex 2.
Figure S11. Plot of ½i/½ vs. iᵢ/½ to obtain kIIIₒ→S and kIII₂S→O for complex 6.
Figure S12. Plot of ln(iᵢ/½) vs. l/½ to obtain kIIₒ→S for complex 2.
Figure S13. Plot of ln(iᵢ/½) vs. l/½ to obtain kIIₒ→S for complex 6.
Figure S14. NMR spectra of 2 in CD₃CN after irradiation at t = a) 0, b) 45 and c) 90 minutes.
Figure S15. CV of 2 in CH₃CN + 0.1 M TBAH after irradiation during 90 minutes.
Figure S16. CV of 6’ in CH₂Cl₂ + 0.1 M TBAH.
Figure S17. Successive UV-visible spectra obtained after irradiation of a solution of complex 6 in CHCl₃ during 60 min, to generate complex 6’.
Figure S18. Successive UV-visible spectra obtained after irradiation of a solution of complex 2 in CHCl₃ during 24 h, to generate complex 2”.
Figure S19. CV of 2” in CH₂Cl₂ + 0.1 M TBAH after irradiation.
Figure S20. UV-vis monitoring of complex 2 in water at 80ºC: main figure, spectra registered for 30 minutes; inset, evolution of the band at 516 nm up to 150 minutes.
Figure S21. Red, ¹H-NMR spectrum of complex 2 registered in D₂O. Black, ¹H-NMR spectrum of complex 2 after 150 minutes in water solution at 80ºC.
Table S1. Crystallographic data for complexes 2-5 and 6'.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{10}H_{24}Cl_{2}N_{2}O_{3}RuS_{3}</td>
<td>C_{6}H_{12}Cl_{2}N_{3}O_{3}RuS_{3}</td>
<td>C_{10}H_{22}Cl_{2}F_{3}N_{2}O_{4}RuS_{3}</td>
<td>C_{13}H_{24}BrCl_{2}N_{2}O_{4}RuS_{3}</td>
<td>C_{11}H_{15}Cl_{3}N_{3}ORuS</td>
</tr>
<tr>
<td>Formula weight</td>
<td>488.46</td>
<td>519.44</td>
<td>560.45</td>
<td>620.40</td>
<td>515.64</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)/c</td>
<td>P21/n</td>
<td>P 21/n</td>
<td>P2(1)/c</td>
<td>P21/c</td>
</tr>
<tr>
<td>a [Å]</td>
<td>8.8684(17)</td>
<td>8.396(7)</td>
<td>8.739(3)</td>
<td>12.493(6)</td>
<td>9.969(5)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>15.809(3)</td>
<td>14.403(12)</td>
<td>10.690(3)</td>
<td>16.522(6)</td>
<td>11.326(6)</td>
</tr>
<tr>
<td>α [°]</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β [°]</td>
<td>102.331(3)</td>
<td>105.773(13)</td>
<td>93.393(6)</td>
<td>130.27(2)</td>
<td>96.414 (7)</td>
</tr>
<tr>
<td>γ [°]</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V [Å³]</td>
<td>1950.3(6)</td>
<td>1837(3)</td>
<td>2172.9(12)</td>
<td>2195.9(17)</td>
<td>1870.8(16)</td>
</tr>
<tr>
<td>Formula Units/cell</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Temp. [K]</td>
<td>298(2)</td>
<td>298(2)</td>
<td>298(2)</td>
<td>298(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>ρ_{calc} [Mg/m³]</td>
<td>1.664</td>
<td>1.878</td>
<td>1.713</td>
<td>1.877</td>
<td>1.831</td>
</tr>
<tr>
<td>μ [mm⁻¹]</td>
<td>1.407</td>
<td>1.509</td>
<td>1.297</td>
<td>3.083</td>
<td>1.665</td>
</tr>
<tr>
<td>Final R indices, [I>2σ(I)]</td>
<td>R1=0.0256</td>
<td>R1=0.0237</td>
<td>R1=0.0390</td>
<td>R1=0.0387</td>
<td>R1 = 0.0400</td>
</tr>
<tr>
<td></td>
<td>wR2=0.0657</td>
<td>wR2=0.0608</td>
<td>wR2=0.1193</td>
<td>wR2=0.0985</td>
<td>wR2 = 0.1022</td>
</tr>
<tr>
<td>R indices [all data]</td>
<td>R1=0.0298</td>
<td>R1=0.0259</td>
<td>R1=0.0447</td>
<td>R1=0.0523</td>
<td>R1 = 0.0524</td>
</tr>
<tr>
<td></td>
<td>wR2=0.0681</td>
<td>wR2=0.0626</td>
<td>wR2=0.1229</td>
<td>wR2=0.1052</td>
<td>wR2 = 0.1111</td>
</tr>
</tbody>
</table>

R₁ = Σ|F_o| - |F_c|/Σ|F_o|

wR2 = [Σ(w(F_o²-F_c²)²)/Σ(w(F_o²)²)]^½, where w = 1/[σ²(F_o²) + (0.0042P)²] and P=(F_o²+2F_c²)
Table S2. Formulas used for the calculation of rate (k) and equilibrium (K) constants.

<table>
<thead>
<tr>
<th>Equations</th>
<th>Description of parameters</th>
</tr>
</thead>
</table>
| \(\frac{i_c}{i_{c2}} = a \cdot \frac{1}{v} + K_{O-S}^{III} \)
(eq. 1) |
\(i_c = \) cathodic peak intensity (A)
\(a = RT/nF, \) with:
\(R = \) Boltzmann constant (J/(K·mol))
\(T = \) temperature (K)
\(n = \) number of exchanged electrons
\(F = \) Faraday constant (A·s/mol)
\(v = \) scan rate (V/s)
\(K = \) equilibrium constant |
| \(\sqrt{v} = \frac{1}{0.471} \cdot \frac{i_d}{nF} \cdot \frac{1}{i_k} + \frac{1.02}{nF} \cdot \frac{i_k}{RT} \)
(eq. 2) |
\(i_d = \) diffusional current in the absence of a chemical reaction (= \(i_{a1} \))
\(i_k = \) measured peak current (= \(i_{c1} \))
\(l = k_{O-S}^{III} + k_{S-O}^{III} \) |
| \(K^{II} = K^{III} + e^{\frac{F}{RT} \left(E_0^{Ru-S} - E_0^{Ru-O} \right)} \)
(eq. 3) |
\(E^0 = \) standard potential |
| \(\ln \left(\frac{i_{a1}}{\sqrt{v}} \right) = k_{O-S}^{II} \cdot \frac{1}{v} + b \)
(eq. 4) |
\(b = 0.471 \cdot \frac{1}{RT} \cdot \frac{K_{O-S}^{III}}{K_{O-S}^{III} + k_{S-O}^{III}} \) |
Scheme S1. Ru-dmso complexes gathered in entries 3-6 of Table 2.

cis,cis-[RuCl₂(H₃p)(dmso-S)₂]
trans,cis-[RuCl₂(H₃p)(dmso-S)₂]

trans,cis-[RuCl₂(bpp)(dmso-S)₂]
out-[Ru(L₂)(trpy)(dmso-S)]⁺
Figure S1. NMR spectra of 2, 400 MHz, CD$_2$Cl$_2$: a) 1H-NMR; b) 13C-NMR; c) COSY; d) NOESY; e) 1H-13C HSQC, f) 1H-13C HMBC

a)

![NMR spectrum image]

b)

![NMR spectrum image]
Figure S2. NMR spectra of 3, 300 MHz, CD$_2$Cl$_2$: a) 1H-NMR; b) 13C-NMR; c) COSY; d) NOESY; e) 1H-13C HSQC, f) 1H-13C HMBC

a)

b)
Figure S3. NMR spectra of 4, 300 MHz, CD$_2$Cl$_2$: a) 1H-NMR; b) 13C-NMR; c) COSY; d) NOESY; e) 1H-13C HSQC, f) 1H-13C HMBC

![NMR spectra](image-url)
e)

f)
Figure S4. NMR spectra of 5, 300 MHz, CD$_2$Cl$_2$: a) 1H-NMR; b) 13C-NMR; c) COSY; d) NOESY; e) 1H-13C HSQC, f) 1H-13C HMBC, g) 1H-NMR with presence of the minor isomer.

a)

b)
Figure S5. UV-visible spectra of 2 (blue), 3 (green), 4 (grey) and 5 (red) in CH$_2$Cl$_2$

![UV-visible spectra](image)

Figure S6. CV of a) 3 (blue), 4 (black) and 5 (orange) in CH$_3$CN + 0.1 M TBAH.

![CV of a) 3 (blue), 4 (black) and 5 (orange)](image)
Figure S7. CV registered in CH$_2$Cl$_2$ (TBAH, 0.1M) vs Ag/AgCl starting the scanning potential at $E_{\text{init}} = 0.6$ for 2 and 0 V for 6 at scan rates between 0.20 and 8 V/s (equilibration time = 2 s).

a) complex 2, b) complex 6.
Figure S8. Plot of i_{C1}/i_{C2} vs. $1/\nu$ to obtain $K_{^{\text{III}}O_{-S}}$ for complex 2.

Figure S9. Plot of i_{C1}/i_{C2} vs. $1/\nu$ to obtain $K_{^{\text{III}}O_{-S}}$ for complex 6.
Figure S10. Plot of $v^{1/2}$ vs. i_d/i_k to obtain $k_{III}^{S\rightarrow O}$ and $k_{III}^{O\rightarrow S}$ for complex 2.

Figure S11. Plot of $v^{1/2}$ vs. i_d/i_k to obtain $k_{III}^{S\rightarrow O}$ and $k_{III}^{O\rightarrow S}$ for complex 6.
Figure S12. Plot of $\ln(i_{a1}/\nu^{1/2})$ vs. $1/\nu$ to obtain $k_{O\rightarrow S}^{II}$ for complex 2

Figure S13. Plot of $\ln(i_{a1}/\nu^{1/2})$ vs. $1/\nu$ to obtain $k_{O\rightarrow S}^{II}$ for complex 6
Figure S14. NMR spectra of 2 in CH₃CN after irradiation at t = a) 0, b) 45 and c) 90 minutes.
Figure S15. CV of 2 in CH$_3$CN + 0.1 M TBAH after irradiation during 90 minutes.
Figure S16. CV of 6’ in CH₂Cl₂ + 0.1 M TBAH.

Figure S17. Successive UV-visible spectra obtained after irradiation of a solution of complex 6 in CHCl₃ during 60 min, to generate complex 6’.
Figure S18. Successive UV-visible spectra obtained after irradiation of a solution of complex 2 in CHCl₃ during 24 h, to generate complex 2".

Figure S19. CV of 2" in CH₂Cl₂ + 0.1 M TBAH after irradiation.
Figure S20. UV-vis monitoring of complex 2 in water at 80°C: main figure, spectra registered for 30 minutes; inset, evolution of the band at 516 nm up to 150 minutes.

Figure S21. Red, 1H-NMR spectrum of complex 2 registered in D$_2$O. Black, 1H-NMR spectrum of complex 2 after 150 minutes in water solution at 80°C.