# **Dalton Transactions**

## **Supporting Information**

### Platinum Complexes Bearing Normal and Mesoionic N-Heterocyclic Carbene Based Pincer Ligands: Syntheses, Structures, and Photo-Functional Attributes

Abbas Raja Naziruddin, Chen-Shiang Lee, Wan-Jung Lin, Bing-Jian Sun, Kang-Heng Chao, Agnes Hsiu Hwa Chang\*, and Wen-Shu Hwang\*

#### Contents.

#### Figure S1. Molecular Structure of 1.PF<sub>6</sub>.

#### Figure S2.

(a.) Emission spectra of 1–3 recorded from acetonitrile solutions.

(b.) Emission spectra of 4-6 recorded from acetonitrile solutions.

**Table S1.** Crystallographic data of  $1 \cdot PF_6$ , **2**,  $3 \cdot PF_6$ ,  $4 \cdot PF_6$  and  $2 \cdot H_2O$ .

Table S2.1. Orbital diagram of HOMO-14 to LUMO+14 levels of 1 for the optimized singlet states.

Table S2.2. Orbital diagram of HOMO-14 to LUMO+14 levels of 2 for the optimized singlet states.

Table S2.3. Orbital diagram of HOMO–14 to LUMO+14 levels of **3** for the optimized singlet states.

Table S2.4. Orbital diagram of HOMO–14 to LUMO+14 levels of 4 for the optimized singlet states.

 Table S2.5.
 Orbital diagram of HOMO-14 to LUMO+14 levels of 5 for the optimized singlet states.

Table S2.6. Orbital diagram of HOMO–14 to LUMO+14 levels of 6 for the optimized singlet states.

**Table S3.1.** TD-DFT assignment of electronic transitions along with oscillator strengths.

#### Table S3.2.

(a.) Percentage weightages of HOMO and LUMO in 1, 2, and 3.

(b.) Percentage weightages of HOMO and LUMO in 4, 5, and 6.

#### **Other Relevant Files.**

**1.** A combined crystallographic information file is available for all of the reported structures.

**2.** A combined molecular coordinates files of DFT optimized structures of complexes 1-6 for singlet (S<sub>0</sub>).

Corresponding Author\* Address: Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan, ROC. Fax: +886 3 8632000; Tel: +886 3 8632001; Corresponding Authors E-mail: hws@mail.ndhu.edu.tw.



Figure S2: (a.) Emission spectra of 2 and 3 in acetonitrile solution.



Figure S2: (b.) Emission spectra of 4, 5, and 6 in acetonitrile solution.



Table S1. Crystal data and structure refinement for Pt complexes

| Complex                                    | 1                                  | 2                                  | 3                                  | 2·H <sub>2</sub> O                    |
|--------------------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------------|
| Empirical formula                          | $C_{32}H_{35}ClF_6N_5OPPt$         | $C_{33}H_{35}F_{12}N_7P_2Pt$       | $C_{31}H_{31}Cl_2F_6N_6PPt \\$     | $C_{31}H_{34}F_{12}N_6OP_2Pt$         |
| Formula weight                             | 881.16                             | 1014.71                            | 898.58                             | 991.67                                |
| Temperature (K)                            | 100(2)                             | 296(2)                             | 296(2)                             | 296(2)                                |
| Wavelength (Å)                             | 0.71073                            | 0.71073                            | 0.71073                            | 0.71073                               |
| Crystal system                             | Monoclinic                         | monoclinic                         | Monoclinic                         | Monoclinic                            |
| space group                                | P2(1)/c                            | P2(1)/c                            | Cc                                 | P2(1)/c                               |
| a (Å)                                      | 10.3785(8)                         | 23.1671(10)                        | 19.7610(5)                         | 19.3773(19)                           |
| b (Å)                                      | 20.6873(17)                        | 8.6136(3)                          | 13.1217(3)                         | 8.4921(9)                             |
| c (Å)                                      | 15.9606(13)                        | 20.8355(9)                         | 15.7217(6)                         | 22.294(2)                             |
| α (°)                                      | 90.00                              | 90.00                              | 90.00                              | 90.00                                 |
| β (°)                                      | 100.8570(10)                       | 113.4630(10)                       | 122.84                             | 92.745(2)                             |
| γ (°)                                      | 90.00                              | 90.00                              | 90.00                              | 90.00                                 |
| $V(Å^3)$                                   | 3365.5(5)                          | 3813.99                            | 3425.11(18)                        | 3664.4(6)                             |
| Z                                          | 4                                  | 4                                  | 4                                  | 4                                     |
| Calculated density (Mg·m <sup>-3</sup> )   | 1.739                              | 1.767                              | 1.743                              | 1.798                                 |
| Absorption coefficient (mm <sup>-1</sup> ) | 4.364                              | 3.857                              | 4.364                              | 4.013                                 |
| <i>F</i> (000)                             | 1736                               | 1992                               | 1760                               | 1944                                  |
| h, k, l <sub>max</sub>                     | 13, 27, 21                         | 28, 10, 25                         | 23, 15, 18                         | -23<=h<=23, -9<=k<=10, -<br>27<=l<=27 |
| Theta range for data collection (°)        | 1.63-28.52                         | 0.96-25.50                         | 1.98-25.07                         | 1.83-25.50                            |
|                                            |                                    |                                    |                                    | 18080/6741                            |
| Reflections collected / unique             | 8511/7401                          | 7101/ 5769                         | 6028/ 5695                         |                                       |
| Completeness (%)                           | 99.6                               | 100.0                              | 99.8                               | 98.8                                  |
| Refinement method                          | Full-matrix least-squares on $F^2$    |

| Data / restraints / parameters                             | 8511/0/432                        | 7101/0/504                        | 6028/2/447                        | 6741/0/ 479                       |
|------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Goodness-of-fit on $F^2$                                   | 1.038                             | 1.038                             | 1.042                             | 1.299                             |
| Final <i>R</i> indices $[I > 2\sigma(I)]$                  | $R_1 = 0.0281$<br>$wR_2 = 0.0653$ | $R_1 = 0.0325$<br>$wR_2 = 0.0883$ | $R_1 = 0.0306$<br>$wR_2 = 0.0807$ | $R_1 = 0.0993$<br>$wR_2 = 0.2048$ |
| <i>R</i> indices (all data)                                | R = 0.348<br>$wR_2 = 0.0689$      | R = 0.0453<br>$wR_2 = 0.1005$     | R = 0.0333<br>$wR_2 = 0.0822$     | $R_1 = 0.1228$<br>$wR_2 = 0.2148$ |
| Largest diff. peak and hole( $e \cdot \mathring{A}^{-3}$ ) | 2.752 and -1.429                  | 0.885 and -0.734                  | 0.777 and -0.315                  | 2.918 and -5.075                  |

| 4                                                                     |
|-----------------------------------------------------------------------|
| C <sub>29</sub> H <sub>31</sub> Cl F <sub>6</sub> N <sub>7</sub> P Pt |
| 853.12                                                                |
| 296(2) K                                                              |
| 0.71073                                                               |
| Monoclinic,                                                           |
| P2(1)/n                                                               |
| 9.1269(5)                                                             |
| 25.3776(16)                                                           |
| 15.1848(9)                                                            |
| 90.00                                                                 |
| 106.5720°(10)                                                         |
| 90.00                                                                 |
| 3371.0(3) Å <sup>3</sup>                                              |
| 4                                                                     |
| 1.681                                                                 |
| 4.353                                                                 |
| 1672                                                                  |
| 10, 30, 15                                                            |
| 1.60–25.11                                                            |
|                                                                       |
| 20481 / 5959 [R(int) = 0.0617]                                        |
|                                                                       |
| 99.2                                                                  |
| Full-matrix least-squares on F <sup>2</sup>                           |
| 5959 / 0 / 414                                                        |
| 0.877                                                                 |
| $R_1 = 0.0447, wR_2 = 0.1182$                                         |
| $R_1 = 0.0813, wR_2 = 0.1410$                                         |
| 0.760 and -0.501                                                      |
|                                                                       |

**Table S2.1:** Orbital diagram of HOMO–14 to LUMO+14 levels of **1** for the singlet states.









HOMO-5(131) -0.33392



HOMO-6(130) -0.34865



HOMO-7(129) -0.35932



HOMO-8(128) -0.38282



HOMO-9(127) -0.39089







LUMO+4(143) -0.21184



LUMO+3(142) -0.23678



LUMO+2(141) -0.24321



LUMO+1(140) -0.27529



LUMO(139) -0.31124



HOMO-10(128) -0.51704



HOMO-11(127) -0.51980



HOMO-12(126) -0.52045



HOMO-13(125) -0.52059



HOMO-14(124) -0.52397



HOMO-5(133) -0.48140



HOMO-6(132) -0.48242



HOMO-7(131) -0.48782



HOMO-8(130) -0.49027



HOMO-9(129) -0.50092













HOMO-13(121) -0.41876



HOMO-14(120) -0.41935



HOMO-5(129) -0.35187



HOMO-6(128) -0.35248



HOMO-7(127) -0.36269



HOMO-8(126) -0.38607



HOMO-9(125) -0.38977





















HOMO-8 -0.449753



HOMO-9 -0.49922





S0 state, B3LYP/SDD











|   | λ (nm)  | Excitation                                                          | Ocillatorstrength | Assignment              |
|---|---------|---------------------------------------------------------------------|-------------------|-------------------------|
| 1 | 273     | $HOMO-9 \rightarrow LUMO$                                           | 0.1428            | mixed <sup>1</sup> IL   |
|   | 309-324 | HOMO-6 $\rightarrow$ LUMO+1                                         | 0.0851            | mixed <sup>1</sup> MLCT |
|   | 366-385 | HOMO-4 →LUMO                                                        | 0.0542            | mixed <sup>1</sup> MLCT |
| 2 | 263     | HOMO-8 $\rightarrow$ LUMO                                           | 0.1751            | mixed <sup>1</sup> IL   |
|   |         | HOMO-4 $\rightarrow$ LUMO+1                                         | 0.1905            | mixed <sup>1</sup> IL   |
|   |         | HOMO-7 $\rightarrow$ LUMO (26%),                                    |                   |                         |
|   | 315     | HOMO-5 $\rightarrow$ LUMO (57%),                                    | 0.0223            | <sup>1</sup> mixed MLCT |
|   |         | HOMO-4 $\rightarrow$ LUMO+1 (13%)                                   |                   |                         |
|   | 365-410 | HOMO-4 $\rightarrow$ LUMO                                           | 0.0103            | <sup>1</sup> mixed MLCT |
| 3 | 264     | $HOMO-10 \rightarrow LUMO$                                          | 0.1548            | mixed <sup>1</sup> IL   |
|   |         | HOMO-6 $\rightarrow$ LUMO+1                                         | 0.1177            | mixed <sup>1</sup> MLCT |
|   | 362-414 | HOMO-4 →LUMO                                                        | 0.055             | mixed <sup>1</sup> MLCT |
|   | 245     | HOMO-11, HOMO-8 $\rightarrow$ LUMO+1 and                            | 0 2984            | MP <sup>1</sup> II CT   |
| 4 | 215     | HOMO-9 →LUMO                                                        | 0.2901            |                         |
|   | 290-350 | $HOMO-11 \rightarrow LUMO+1$                                        | 0.0876            | mixed <sup>1</sup> MLCT |
|   |         | $HOMO-6 \rightarrow LUMO+2$                                         |                   |                         |
|   | 365-401 | HOMO-6 $\rightarrow$ LUMO+1                                         | 0.0806            | mixed <sup>1</sup> MLCT |
|   |         | HOMO- $1 \rightarrow LUMO+2$                                        |                   |                         |
| 5 | 243     | H-7 to L +4; H-8 to L+1                                             | 0.2263            | MP <sup>1</sup> IL CT   |
| 1 |         |                                                                     |                   |                         |
|   |         | HOMO $-9 \rightarrow LUMO$                                          |                   |                         |
|   | 286     | HOMO-6 $\rightarrow$ LUMO +1                                        | 0.0780            | mixed <sup>1</sup> MLCT |
|   |         | HOMO-4 $\rightarrow$ LUMP+2                                         |                   |                         |
|   | 317     | HOMO $-6 \rightarrow LUMO$                                          | 0.1796            | mixed <sup>1</sup> MLCT |
|   |         |                                                                     |                   |                         |
| 6 | 227     | HOMO -9 $\rightarrow$ L + 1                                         | 0.4080            | MP <sup>1</sup> IL CT   |
|   |         | HOMO $-4 \rightarrow L + 3$                                         |                   |                         |
|   |         | HOMO -11 $\rightarrow$ LUMO; HOMO -9 $\rightarrow$ LUMO;            | 0.0351            |                         |
|   | 260-300 | $HOMO - 0 \rightarrow L + 3.$                                       | 0.1036            | mixed <sup>1</sup> MLCT |
|   |         | HOMO -9 $\rightarrow$ L + 1; HOMO - 6 $\rightarrow$ LUMO + 2        |                   |                         |
|   |         |                                                                     |                   |                         |
|   |         |                                                                     | 0.0223            |                         |
|   | 225     | HOMO $-4 \rightarrow LUMO +2$                                       |                   | minut MI CT             |
|   | 325     | 325<br>HOMO -9 $\rightarrow$ LUMO +1; HOMO -6 $\rightarrow$ LUMO +2 | 0.1036            | mixea MLCT              |
|   |         |                                                                     |                   |                         |

**Table S3.1.** TD-DFT assignment of electronic transitions along with oscillator strengths.

#### Table S3.2. Percentage weightages of HOMO and LUMO in 1–6.

(a) For S<sub>0</sub> states of complexes bearing pyridine *bis*-imidazol-2-ylidene donors.

| S <sub>0</sub>     | HOMO   | LUMO   |
|--------------------|--------|--------|
| 1                  |        |        |
| Pincer ligand      | 58.27% | 90.53% |
| Cl                 | 32.01% | 1.79%  |
| Pt                 | 9.72%  | 7.68%  |
| 2                  |        |        |
| Pincer ligand      | 99.83% | 90.58% |
| CH <sub>3</sub> CN | 0.12%  | 3.20%  |
| Pt                 | 0.05%  | 6.22%  |
| 3                  |        |        |
| Pincer ligand      | 99.17% | 91.91% |
| CN                 | 0.57%  | 1.71%  |
| Pt                 | 0.26%  | 6.38%  |

(b) For  $S_0$  states of complexes bearing triazol-5-ylidene donors.

| S <sub>0</sub>     | HOMO   | LUMO   |
|--------------------|--------|--------|
| 4                  |        |        |
| Pincer ligand      | 41.73% | 93.08% |
| Cl                 | 42.70% | 1.28%  |
| Pt                 | 15.57% | 5.64%  |
| 5                  |        |        |
| Pincer ligand      | 99.86% | 93.62% |
| CH <sub>3</sub> CN | 0.11%  | 2.25%  |
| Pt                 | 0.04%  | 4.13%  |
| 6                  |        |        |
| Pincer ligand      | 98.08% | 97.61% |
| CN                 | 0.38%  | 0.52%  |
| Pt                 | 1.53%  | 1.87%  |