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OVERVIEW OF THE SUPPLEMENTAL INFORMATION 
 
Our objective and general method 
 
This document contains detailed methodologies for calculating most of the end-result 
numbers in the main paper. The calculations provided here and all additional 
calculations for the main paper are detailed further in accompanying spreadsheets 
(Delucchi et al., 2015).  
 
Our general objective in this document is to estimate the costs and benefits of meeting 
all end-use energy demand in all 50 U.S. states with wind, water, and solar (WWS) 
power, compared with a “business-as-usual” (BAU) scenario. We base our BAU 
scenario on highly detailed projections by the U. S. Energy Information Administration 
(EIA), because these are the most comprehensive, detailed, well-documented, and well-
known energy-use projections for the U.S.  
 
In the following sections we describe how we obtain our estimates of  
 
1) Energy use in a 100%-WWS world versus a BAU world 
 
2) The difference in the cost of electricity use in the 100% WWS scenario versus the BAU 

scenario.  
 
3) The total damage cost of air pollution from conventional fuels. 
 
4) The cost of climate change from fossil-fuel use: damages attributable to and borne by 

each state.  
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5) Earnings from new construction and operation jobs in a 100% WWS world. 
 
6) Projection of state population and GDP. 
 
7) The national-average levelized cost of electricity by type of generator. 
 
8) Calculation of the cost of electricity by state, year, and scenario.  
 
 
Construction of “low” and “high” cost scenarios 
 
In order to unify our presentation, we report costs and other results for two general 
cases: one based on low costs and high benefits (i.e., low net costs or high net benefits) 
for the 100% WWS scenario, and one based on the reverse, high costs and low benefits 
(i.e., high net costs or low net benefits) for the 100% WWS scenario. For ease of 
exposition we use the following abbreviations:  
 
LCHB = low-cost, high benefits for 100% WWS 
HCLB = high cost, low benefits for 100% WWS 
 
For each case, all of the component costs and benefits summed to make the total have 
the same underlying explicit or implicit assumptions regarding the discount rate and 
other parameters. This means, for example, that in either case we do not add a cost 
estimate based on a low discount rate to a benefit estimate based on a high-discount 
rate. This results in the following for the LCHB case (with the opposite for the HCLB 
case):  
 
Cost or benefit Discount rate, Low (LCHB) case Other parameters, Low 

(LCHB) case 

WWS delivered 
electricity cost 

Low value. Results in low annualized 
capital costs. 

Low capital cost of 
construction. 
Low operating costs. 
High capacity factor. 
High (long) lifetime. 

Conventional 
delivered 
electricity cost 

Low value.  Low capital cost of 
construction. 
Low operating costs. 
High capacity factor. 
High (long) lifetime.  
(It is possible that WWS 
could have low values 
while conventional has 
high values, and vice 
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versa, but we do not 
examine this here.)  

Storage costs Low value. Results in low annualized 
capital costs. 

Low capital cost. 
Low operating costs. 
High (long) lifetime. 

Long distance 
transmission 
costs 

Low value. Results in low annualized 
capital costs.  

Shorter transmission 
distance and other 
assumptions that result in 
lower annualized costs. 

Cost of energy 
efficiency 
improvements 

Low value. Results in low annualized 
cost. 

Low initial cost.  
High (long) life of 
efficiency improvement. 

Change in 
electricity costs,  
WWS vs. BAU 

Low value, in order to ensure 
consistency when added with other 
costs (e.g., climate-change costs).   

Low value of parameters 
affecting cost of delivered 
electricity and efficiency 
improvements. 

Foregone air-
pollution costs 
(benefit of WWS) 

Not specified. (A component of the 
discount rate, productivity growth per 
capita, can affect the value of a 
statistical life [VOSL], such that a low 
discount rate results in a lower VOSL 
and hence a lower benefit for WWS, 
but this effect is small, and we ignore 
it.) 

High air pollution levels. 
High value of life. 
High exposure to 
pollution. 
High value of non-
mortality impacts. 
 

Foregone 
climate-change 
costs (benefit of 
WWS) 

Not specified, but implicitly a low 
value, because low values of the 
discount rate result in higher present 
worth of climate-change damages 
which gives high net benefits (or low 
net costs) of WWS. Note that whereas 
the discount rate does not have a major 
effect on the cost of air pollution, it does 
have a major effect on the social cost of 
carbon.  

High social cost of carbon, 
leading to high net 
benefits (or low net costs) 
for WWs. 
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1. ENERGY USE IN A 100% WWS WORLD VS. A BAU WORLD 
 
We estimate energy end-use in a 100% WWS world relative to the EIA’s (2014c) Annual 
Energy Outlook (AEO) projections of energy use in its so-called “reference” scenario, 
which we also refer to as a BAU (Business –As-Usual) scenario. We start with the EIA-
based estimates for the BAU and then adjust them for differences between the BAU and 
the WWS scenario due to extensive electrification in the WWS scenario, the absence of 
energy use in the industrial sector for petroleum refining to produce energy products in 
the WWS scenario, and extra end-use energy efficiency measures in the WWS scenario 
beyond those assumed in the BAU scenario.  
 
Projections of end-use energy by state, sector, and fuel source, BAU 
 
We start with estimates of the use of liquid fuels, natural gas, coal, renewable fuels, and 
electricity in the residential, commercial, industrial, and transportation sectors of each 
state in 2010. The EIA’s AEO does not project energy use by state, but it does project 
energy use by sector and fuel source in each of nine Census Divisions covering all 50 
states. We therefore project each state’s energy use based on the changes projected for 
the Census Division covering that state. Formally,  
 

  
Ei ,X ,S ,Y = Ei ,X ,S ,2010 ⋅

Ei ,X ,R:S∈R ,Y

Ei ,X ,R:S∈R ,2010
 

 
where  
 

  Ei ,X ,S ,Y  = end-use of fuel i in sector X in state S in year Y (BTU) 

  Ei ,X ,S ,2010  = end-use of fuel i in sector X in state S in year 2010 (BTU) (EIA State Energy 
Data System, www.eia.gov/state/seds/) 

  Ei ,X ,R:S∈R ,Y = end-use of fuel i in sector X in Census Division R (containing S) in year Y 
(BTU) (EIA, 2014c; the EIA projects out to 2040, and we extend to 2075 by using a 
moving 10-year trend extrapolation starting with the estimate for 2031) 

  Ei ,X ,R:S∈R ,2010  = end-use of fuel i in sector X in Census Division R (containing S) in year 
2010 (BTU) (EIA, 2013b) 

 
Subscripts 
i  = fuels for which the EIA estimates energy use (liquid fuels, natural gas, coal, 

renewable energy, electricity) 
X = end-use energy sectors (residential, commercial, industrial, transportation) 
S = state in the U.S. 
Y = target year of the analysis 
R = Census region of the U.S. in the EIA’s estimates of energy-related CO2 emissions 

(New England, Middle Atlantic, East North Central, West North Central, South 
Atlantic, East South Central, West South Central, Mountain, and Pacific) 

 
We also re-aggregate the resultant state-level projections to Census-Division-level 
projections.  
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Electrification of end uses in the WWS scenario 
 
Partly on the basis of our examination of end-use energy consumption projected in the 
EIA’s AEO, we assume that end-uses are electrified as follows (with the non-electrified 
fractions producing electrolytic hydrogen as described below):  
 
Sector Fraction electrified 
Residential 

     Liquids 1.00 
    Natural Gas 1.00 
    Coal 1.00 
    Electricity (retail) 1.00 
    Renewables 1.00 
Commercial 

     Liquids 1.00 
    Natural Gas 1.00 
    Coal 1.00 
    Electricity (retail) 1.00 
    Renewables 1.00 
Industrial 

     Liquids 0.95 
    Natural Gas 0.95 
    Coal 0.95 
    Electricity (retail) 1.00 
    Renewables (incl. biofuels for heat) 1.0 
Transportation 

     Liquids 0.76 
    Natural Gas 0.95 
    Electricity (retail) 1.00 
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The value for liquids in Transportation is calculated from more disaggregated 
assumptions, as follows:  
 
Transport mode % of energy Fraction electrified 
On road gasoline, LPG 61% 95% 
On-road diesel 19% 70% 
Off-road diesel 1% 65% 
Military 0% 20% 
Trains 2% 85% 
Aircraft 12% 10% 
Ships 4% 25% 
Lubricants 1% 0% 
All liquid in Transport 100% 76% 
 
End uses that are not electrified (e.g., cooking with a flame in the residential and 
commercial sectors) generally are assumed to use electrolytic hydrogen produced from 
WWS power, or in the case of aircraft, cryogenic hydrogen produced from WWS power.  
 
Energy use in the industrial sector to refine petroleum into energy products 
 
To estimate energy use in the WWS scenario we deduct from the industrial sector an 
estimate of the proportion of energy used to refine petroleum (Jacobson and Delucchi, 
2011). 
 
Extra end-use energy saving measures in the WWS scenario 
 
As explained in the main text, we assume additional energy-efficiency measures 
beyond the EIA’s reference case scenario.  Our method is to start with one of the EIA’s 
own higher efficiency scenarios and then make further adjustments that we believe are 
appropriate.  
 
The EIA (2014c) examines three scenarios in which end-use energy efficiency is higher, 
and delivered energy use lower, than in the reference-case scenario: “Integrated High 
Demand Technology,” “Integrated Best Available Demand Technology,” and “Low 
Electricity Demand.” These three, along with a scenario in which efficiency remains at 
year-2013 levels (“Integrated 2013 Demand Technology”) are described below and in 
Table E-1 and Appendix E of EIA (2014c) (with our shortened descriptors shown in 
parentheses). 
 

Integrated 2013 
Demand 
Technology 

Assumes that future equipment purchases in the residential and 
commercial sectors are based only on the range of equipment 
available in 2013. Commercial and existing residential building shell 
efficiency is held constant at 2013 levels. Energy efficiency of new 
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(2013Tech) industrial plant and equipment is held constant at the 2014 level over 
the projection period.  

Integrated High 
Demand 
Technology 
(High Efficiency 
All Sectors – 
HEAS) 

Assumes earlier availability, lower costs, and higher efficiencies for 
more advanced residential and commercial equipment. For new 
residential construction, building code compliance is assumed to 
improve after 2013, and building shell efficiencies are assumed to 
meet ENERGY STAR requirements by 2023. Existing residential 
building shells exhibit 50% more improvement than in the Reference 
case after 2013. New and existing commercial building shells are 
assumed to improve 25% more than in the Reference case by 2040. 
Industrial sector assumes earlier availability, lower costs, and higher 
efficiency for more advanced equipment and a more rapid rate of 
improvement in the recovery of biomass byproducts from industrial 
processes. In the transportation sector, the characteristics of 
conventional and alternative-fuel LDVs reflect more optimistic 
assumptions about incremental improvements in fuel economy and 
costs, as well as battery electric vehicle costs. Freight trucks are 
assumed to see more rapid improvement in fuel efficiency. More 
optimistic assumptions for fuel efficiency improvements are also 
made for the air, rail, and shipping sectors. 

Integrated Best 
Available 
Demand 
Technology  
(Best Efficiency 
Residential and 
Commercial – 
BERC) 

Assumes that all future equipment purchases in the residential and 
commercial sectors are made from a menu of technologies that 
includes only the most efficient models available in a particular year, 
regardless of cost. All residential building shells for new construction 
are assumed to be code compliant and built to the most efficient 
specifications after 2013, and existing residential shells have twice the 
improvement of the Reference case. New and existing commercial 
building shell efficiencies improve 50% more than in the Reference 
case by 2040. Industrial and transportation sector assumptions are the 
same as in the Reference case.  

Low Electricity 
Demand 
(High Efficiency 
Electricity Use -- 
HEEE) 

This case was developed to explore the effects on the electric power 
sector if growth in sales to the grid remained relatively low. It uses the 
assumptions in the Best Available Demand Technology case for the 
residential and commercial sectors. In addition, input values for the 
industrial sector motor model are adjusted to increase system savings 
values for pumps, fans, and air compressors relative to the Reference 
case. This adjustment lowers total motor electricity consumption by 
slightly less than 20%. Although technically plausible, this decrease in 
motor adjustment is not intended to be a likely representation of 
motor development. As a result of these changes across the end-use 
sectors, retail sales in 2040 in this case are roughly the same as in 2012. 
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Here we start with the EIA’s HEAS (High Efficiency All Scenarios) scenario, and 
estimate the ratio of HEAS to Reference energy use by sector (residential, commercial, 
industrial, and transportation), fuel (petroleum, natural gas, coal, renewable fuel, 
electricity), Census Division (nine for the U.S.), and year (2011-2075; recall that we use 
10-year moving linear trend extrapolation to extend the EIA’s projections from 2040 to 
2075). We then multiply the resultant HEAS/Reference ratios by additional adjustment 
factors to make the final energy-saving estimates closer to the BERC or HEEU scenario 
estimates for the residential, commercial and industrial sectors and closer to our own 
sense of what is reasonable for the transportation sector. 
 
 

 Table S1. Energy Use by Sector and Source for various energy-use scenarios, United 
States, year 2040 
 

Sector and Source 

% change versus EIA Reference Ref. 
(quad.   
BTU) 2013Tech HEEU HEAS BERC JD11 This paper 

 Residential               

   Petroleum, Other Liquids 8.5% -16.5% -9.2% -16.6% -10% -12.9% 0.66 

   Natural Gas 7.9% -28.2% -10.8% -28.3% -15% -17.0% 4.21 

   Renewable Energy 20.5% -21.7% -13.2% -21.6% -10% -14.5% 0.42 

   Electricity 8.8% -22.2% -12.9% -22.8% -10% -17.2% 5.65 

     Delivered Energy 8.9% -24.1% -11.9% -24.5%     10.94 

   Electricity Related Losses 8.3% -19.2% -10.4% -20.2%    10.55 

     Total 8.6% -21.7% -11.2% -22.4%    21.48 

 Commercial               

   Petroleum, Other Liquids 0.2% -4.4% -4.0% -4.5% -5% -4.0% 0.68 

   Natural Gas -3.1% -0.8% 1.3% -0.5% -10% -0.7% 3.65 

   Coal -0.1% 0.3% 0.2% 0.2% -5% 0.2% 0.04 

   Renewable Energy  0.0% 0.0% 0.0% 0.0% -5% 0.0% 0.13 

   Electricity 9.7% -21.2% -17.5% -21.7% 0% -19.2% 5.72 

     Delivered Energy 4.3% -12.4% -9.6% -12.6%     10.22 

   Electricity Related Losses 9.2% -18.2% -15.2% -19.1%    10.66 

     Total 6.8% -15.4% -12.5% -15.9%    20.88 

 Industrial               

   Petroleum, Other Liquids 6.3% 0.1% -2.1% 0.0% -5% -2.1% 10.10 

   Natural Gas and related 10.6% -0.4% -0.3% -0.1% -5% -1.3% 11.28 

   Coal 12.6% 5.5% -4.0% 4.9% -5% -3.9% 1.44 

   Biofuels Heat Coproducts -0.2% 0.0% -0.1% -0.1% -5% -3.9% 0.79 

   Renewable Energy    1.0% 11.0% 1.0% -5% 11.0% 2.28 
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   Electricity 10.0% -16.6% -2.5% 3.8% 0% -7.3% 4.34 

     Delivered Energy 7.6% -2.1% -0.5% 0.8%     30.22 

   Electricity Related Losses 9.5% -13.4% 0.3% 7.2%    8.10 

     Total 8.0% -4.5% -0.4% 2.2%    38.33 

 Transportation               

  Petroleum, Other Liquids -0.3% 0.9% -0.5% 0.8% -15% -5.5% 23.73 

  Natural gas and hydrogen  -1.7% 0.0% -23.2% 1.1% -15% -23.3% 1.71 

  Electricity -0.1% 0.5% 8.4% 0.4% -5% 7.9% 0.06 

     Delivered Energy -0.4% 0.8% -2.0% 0.8%   
 

25.50 

   Electricity Related Losses -0.6% 4.3% 11.5% 3.7%   
 

0.12 

     Total -0.4% 0.8% -2.0% 0.8%   
 

25.62 

All sectors           
 

  

   Petroleum, Other Liquids 1.8% 0.2% -1.2% 0.1%   
 

35.17 

  Natural gas and related 6.6% -6.0% -4.0% -5.8%   
 

20.85 

  Coal 12.2% 5.3% -3.9% 4.8%   
 

1.48 

  Renewable energy -1.7% -1.9% 5.4% -1.9%   
 

3.62 

  Electricity 9.4% -20.2% -11.6% -15.0%   
 

15.77 

     Delivered Energy 4.7% -5.7% -3.8% -4.6%   
 

76.88 

   Electricity Related Losses 8.9% -17.1% -9.1% -12.2%   
 

29.43 

     Total 5.9% -8.8% -5.3% -6.7%   
 

106.31 

 Electric Power generation            
 

  

   Petroleum, Other Liquids 7.2% -17.8% -8.6% -12.9%   
 

0.19 

   Natural Gas 7.9% -25.1% -20.9% -19.5%   
 

11.48 

   Steam Coal 2.8% -21.2% -5.3% -12.9%   
 

17.27 

   Nuclear / Uranium  9.7% -4.0% -2.8% -4.0%   
 

8.49 

   Renewable Energy  25.1% -17.5% -12.4% -14.9%   
 

7.44 

   Non-biogenic Waste 0.0% 0.0% 0.0% 0.0%   
 

0.23 

   Electricity Imports 21.8% -20.9% -12.6% -16.6%   
 

0.12 

     Total 9.1% -18.2% -10.0% -13.1%   
 

45.20 
  
Source: our tabulation of results from the EIA's Annual Energy Outlook 2014 online data tables: 
http://www.eia.gov/oiaf/aeo/tablebrowser/. 2013Tech = 2013 Technology; HEEU = High Efficiency Electricity 
Use;  HEAS = High Efficiency All Sectors;  BERC = Best Efficiency Residential Commercial; JD11 = Jacobson 
and Delucchi (2011).; Quad. BTU = quadrillion British Thermal Units. Note that JD11 changes are with 
respect to the EIA AEO 2008 projections for the year 2030. All changes reflect fuel shifting as well as 
efficiency improvements. 
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Table S1 shows the EIA’s projections of energy use in the U.S. in 2040 by source and 
sector, for the 2013Tech, HEEU, HEAS, and BERC scenarios versus the EIA Reference 
case. It also shows Jacobson and Delucchi’s (2011) (JD11) assumed energy-use savings 
for the U.S. in 2030 and the results of our current calculations (described above) for the 
year 2040. Note that the EIA scenarios in Table S1 reflect the results of fuel shifting as 
well as the results of efficiency improvements. 
 
As shown in Table S1, the two highest efficiency scenarios, HEEU and BERC, reduce 
electricity use in the residential and commercial sectors by more than 20%, and reduce 
NG use in the residential sector by almost 30%, with respect to the Reference case.  
Overall, the HEEU and BERC scenarios reduce total delivered energy by over 24% in 
the residential sector and by about 12.5% in the commercial sector. The HEAS scenario, 
which generally is less aggressive but also presumably more realistic, reduces total 
delivered energy by 12% in the residential sector and almost 10% in the commercial 
sector. The assumptions of JD11 are broadly consistent with the results of the HEAS 
scenario, except that JD11 assumed no reductions in electricity use in the commercial 
sector.  
 
As mentioned above, we start with the HEAS scenario and make additional 
adjustments. Overall this results in residential-sector and commercial-sector efficiency 
improvements greater than in the HEAS scenario but less than in the BERC and HEEU 
scenarios (“This paper” column of Table S1.)  
 
None of the three EIA high-efficiency scenarios result in significant reductions in 
delivered energy in the industrial or transportation sectors. The HEEU does result in 
nearly a 17% reduction in industrial electricity use, but electricity use is a minor fraction 
of total industrial energy use, and in any event, as indicated above, the EIA implies that 
the HEEU assumptions for the industrial sector probably are not realistic. In general, it 
appears that the EIA believes that there is relatively little room to reduce energy use in 
the industrial sector. JD11 assumed somewhat higher but still modest reductions in 
energy use in the industrial sector. Our current results are less aggressive than in JD11, 
and generally follow the EIA’s HEAS scenario, except that we do assume modest 
additional improvements in electricity-use efficiency in the industrial sector.  
 
Only one of the scenarios, HEAS, examines efficiency improvements in the 
transportation sector. These improvements turn out to be quite modest, resulting in 
only a 2% reduction in energy use over the Reference case. By contrast, JD11 assumed 
much greater potential to reduce energy use in transportation. We believe that JD11 
overestimated but the EIA underestimated the potential for reductions in energy use in 
the transportation sector.  
 
Because energy use in the residential and commercial sectors is much less than in the 
industrial and transportation sectors, and the EIA assumptions result in very little 
efficiency improvement in the industrial and transportation sectors, the EIA’s three 
high-efficiency scenarios reduce total, all-sectors delivered energy in the U.S. in 2040 by 
only 4-6% compared with the reference case. Our assumptions, which assume modest 
efficiency improvements beyond the EIA’s HEAS scenario, especially in the 
transportation sector, result in a 6.7% reduction in overall energy use in 2040.  
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2) THE DIFFERENCE IN THE COST OF ELECTRICITY USE IN THE 100% WWS 
SCENARIO VERSUS THE BAU SCENARIO 
 
Method of analysis 
 
The total cost of all energy use in a 100% WWS scenario is different from the total cost 
in a predominantly fossil-fueled BAU scenario, on account of differences in the types of 
energy and energy-using equipment. For example, referring to the EIA’s fuel end-use 
categories listed above – liquids, natural gas, coal, renewables, and electricity – in the 
BAU scenario oil and natural gas are used by combustion devices, such as space heaters 
or gasoline-engine vehicles, whereas in the WWS scenario these same end uses are 
powered by electric heat pumps, battery-electric vehicles, and so on. To estimate the 
BAU-vs.-WWS difference in the cost of energy in the oil, natural gas, and coal end-use 
categories, one must estimate differences in the in the per-unit cost of delivered energy, 
the efficiency of energy end-use, and the cost of energy-using equipment in both the 
BAU and WWS cases. While we do this for the WWS case and for the BAU electricity 
end-use category, we consider this effort – for the oil, natural gas, and coal end-use 
categories in non-electricity end-use categories – outside the scope of this paper.  
 
By contrast, it is simpler to estimate the WWS-vs.- BAU cost differences in the electricity 
end-use category, because the type of energy (electricity) and the end-use equipment 
are the same in the BAU and the WWS scenarios.  
 
The WWS-vs.-BAU difference in the cost of electricity use is equal to the difference 
between total electricity end-use expenditures in the BAU scenario and total 
expenditures for the same end uses in the WWS scenario. Total expenditures are a 
function of the unit cost of electricity, the quantity of electricity used in the BAU and the 
WWS scenarios, and the cost of any efficiency improvements that reduce electricity 
consumption in the WWS compared with the BAU scenario. Formally, 
 
ΔTCel ,S ,Y ,BAU−WWS = TCel ,S ,Y ,BAU −TCel ,S ,Y ,WWS

TCel ,S ,Y ,BAU = Eel ,S ,Y ,BAU ⋅ACel ,S ,Y ,BAU

TCel ,S ,Y ,WWS = Eel ,S ,Y ,WWS ⋅ACel ,S ,Y ,WWS + ΔEel ,eff ,S ,Y ,BAU−WWS ⋅ACel ,eff (an),S ,Y

ΔEel ,eff ,S ,Y ,BAU−WWS = Eel ,S ,Y ,BAU − Eel ,S ,Y ,WWS

 

 
 
where  
 
ΔTCel ,S ,Y ,BAU−WWS = difference in the total cost of electricity use in the BAU vs. the WWS 

scenario in state S in year Y ($) 
TCel ,S ,Y ,W = the cost of electricity use in state S in year Y in scenario W ($) 
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Eel ,S ,Y ,W = the use of electricity in state S in year Y in scenario W (kWh) (discussed above) 
ACel ,S ,Y ,W = the average cost of electricity in state S in year Y in scenario W ($/kWh) 

(discussed below) 
ΔEel ,eff ,S ,Y ,BAU−WWS = the difference in electricity use in the BAU vs. the WWS  scenario, due 

to efficiency improvements, in state S in year Y (kWh) 
ACel ,eff (an),S ,Y = the average annualized cost of the efficiency improvements that provide 

the electricity savings ∆E in state S in year Y in the WWS scenario ($/kWh) 
 
The average annualized cost of efficiency improvements is estimated by first estimating 
the initial cost of an efficiency improvement, as a function of the payback period of the 
initial investment with respect to the  U.S.-average BAU electricity cost, and then 
annualizing this cost over the life of the improvement. The payback period and the 
lifetime depend on the end-use sector (residential, commercial, industrial, or 
transportation). Formally, 
 
 

ACel ,eff (an),S ,Y = Cel ,eff (an),X ,S ,Y ,WWS ⋅
ΔEel ,eff ,X ,S ,Y ,BAU−WWS

ΔEel ,eff ,S ,Y ,BAU−WWSX
∑

Cel ,eff (an),X ,S ,Y ,WWS =
r ⋅ ICel ,eff ,X

1− e−r⋅Lel ,eff ,X

ICel ,eff ,X = ACel ,US ,Y ,BAU ⋅PBel ,eff ,X

PBel ,eff ,X ≡ frPB,X ⋅Lel ,eff ,X

 

 
 
where  
 
Cel ,eff (an),X ,S ,Y ,WWS = the annualized cost of electricity-use efficiency improvements in sector 

X in state S in year Y in the WWS scenario ($/kWh) 
ΔEel ,eff ,X ,S ,Y ,BAU−WWS = the difference in electricity use in the BAU vs. the WWS  scenario, 

due to efficiency improvements, in sector X in state S in year Y (kWh) (calculated 
using the data described above) 

ICel ,eff ,X = the initial cost of electricity-use efficiency improvements in sector X ($) 
(constant for all years and states) 

Lel ,eff ,X = the lifetime of electricity-use efficiency improvements in sector X ($) (constant 
for all years and states) (discussed below) 

r  = the annual discount rate (discussed below) 
ACel ,US ,Y ,BAU = the average cost of delivered electricity in the US in year Y in the BAU 

scenario ($/kWh) (calculated as documented below) 
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PBel ,eff ,X  = the simple (zero-discount-rate) payback period for electricity-use efficiency 
improvements in sector X (constant for all years and states) (years) (discussed 
below) 

frPB,X = the simple payback period expressed as a fraction of the lifetime Lel ,eff ,X  
 
Combining the foregoing equations and re-arranging into the most useful forms gives  
 
ΔTCel ,S ,Y ,BAU−WWS = Eel ,S ,Y ,BAU ⋅ACel ,S ,Y ,BAU − Eel ,S ,Y ,WWS ⋅ACel ,S ,Y ,WWS

−ΔEel ,eff ,S ,Y ,BAU−WWS ⋅ Cel ,eff (am ),X ,S ,Y ,WWS ⋅
ΔEel ,eff ,X ,S ,Y ,BAU−WWS

ΔEel ,eff ,S ,Y ,BAU−WWSX
∑

= Eel ,S ,Y ,BAU ⋅ACel ,S ,Y ,BAU − Eel ,S ,Y ,WWS ⋅ACel ,S ,Y ,WWS − Cel ,eff (am ),X ,S ,Y ,WWS ⋅ ΔEel ,eff ,X ,S ,Y ,BAU−WWS
X
∑

 

 
 
 

= Eel ,S ,Y ,BAU ⋅ACel ,S ,Y ,BAU − Eel ,S ,Y ,WWS ⋅ACel ,S ,Y ,WWS −
r ⋅ ICel ,eff ,X

1− e−r⋅Lel ,eff ,X
⋅ ΔEel ,eff ,X ,S ,Y ,BAU−WWS

X
∑

= Eel ,S ,Y ,BAU ⋅ACel ,S ,Y ,BAU − Eel ,S ,Y ,WWS ⋅ACel ,S ,Y ,WWS − ACel ,US ,Y ,BAU ⋅
r ⋅ frPB,X ⋅Lel ,eff ,X( )
1− e−r⋅Lel ,eff ,X

⋅ ΔEel ,eff ,X ,S ,Y ,BAU−WWS
X
∑

 Data 
 
Here we need to specify two parameters, the lifetime Lel ,eff ,X  and the simple payback 
period as fraction frPB,X  of the lifetime. On the basis of our review of a detailed analysis 
of energy efficiency measures for the residential, commercial, and industrial sectors of 
the U.S. economy (Granade et al., 2009), we assume the values shown in Table S2. 
 
Note again that we have estimated here differences in energy expenditures only in the 
EIA’s electricity end-use category, and have not estimated differences in all energy-
related expenditures in the WWS vs. the BAU scenario.  
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Table S2. Assumed payback-time fractions (payback period as fraction of lifetime) 
and lifetimes (years) of efficiency measures, in the retail electricity sector 
 
  Payback time fraction (a) Lifetime (years) (b) 
Energy-use sector Low High Low High 
Residential electricity 0.10 0.30 20.0 14.0 
Commercial electricity 0.10 0.25 18.0 12.0 
Industrial electricity 0.15 0.25 25.0 18.0 
Transportation electricity 0.20 0.40 25.0 20.0 
Notes.  
Our assumptions based on Granade et al. (2009), who analyze a comprehensive range of efficiency 
measures, including improvements to building shells, heating and cooling systems, refrigeration, 
lighting, small and large appliances, office equipment, motors, pumps, compressors, industrial processes, 
and more.     
"Low" and "high" mean low and high annualized initial costs.   
(a) Time for energy savings to pay back initial investment, based on the US-average BAU electricity cost 

with no discounting, expressed as a fraction of the investment lifetime. 
(b)  Lifetime of energy efficiency improvements (until failure).  
 
 
3) THE TOTAL DAMAGE COST OF AIR POLLUTION FROM CONVENTIONAL 
FUELS 
 
The total damage cost of air pollution from fossil-fuel and biofuel combustion and 
evaporative emissions comprises mortality costs, morbidity costs, and non-health costs 
such as lost visibility and agricultural output. We estimate this total damage cost of air 
pollution in each state S in a target year Y  as the product of an estimate of the number 
of premature deaths due to air pollution, which is determined from pollution exposure 
levels, relative risks, and population, and the total cost of air pollution per death as 
follows:  
 
APcostS ,Y = ND,S ,Y ⋅VP/D,Y  
 
where  
 
APcostS ,Y  = the damage cost of air pollution in state S year Y 
ND,S ,Y  = the number of deaths D due to air pollution in state S in year Y  
VP/D,Y = the total cost of pollution per death in year Y (includes mortality, morbidity, and 

non-health costs; assumed to be the same for all states)  
 
 
The number of deaths due to air pollution 
 
To estimate the number of premature deaths D due to air pollution in state S in year Y, 
we start with a detailed estimate of the average number of premature deaths per year in 
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each state from 2010 to 2012. We then scale this to account for changes in population, 
exposure, and air pollution between ca. 2011 and the target year Y as follows:  
 

ND,S ,Y = ND,S ,2010−12 ⋅
AY
A2011

⋅
ES ,Y

ES ,2010

AY
A2011

= expΔA⋅ Y −2011( )

ES ,Y

ES ,2010

= expgS ⋅xS ⋅ Y −2011( ) = expgS ⋅ Y −2011( )( )xS = PS ,Y
PS ,2011

⎛
⎝⎜

⎞
⎠⎟

xS

 

 
where  
 
ND,S ,Y  = the number of premature deaths D due to air pollution in state S in year Y  
ND,S ,2010−12  = the number of premature deaths in state S over the period 2010-2012 (see 

discussion in the main text) 
AY = the ambient pollution level, as determined from all air quality monitoring stations 

in each county of each state, in target year Y.  
ES ,Y = the exposed population in state S in target year Y. 
ΔA  = the annual rate of change in the damage-weighted ambient pollution levels, in the 

future (see discussion below in this section) 
gS  = the rate of population growth in state S (see section “Projection of State Population 

and GDP”) 
xS  = the change in exposed population per change in population in state S 
PS ,Y = the population in state S in year Y (see section “Projection of State Population and 

GDP”) 
 
The number of premature deaths in each state for the period 2010-2012 is determined by 
considering data from all air quality monitoring stations in each county of each state. 
For each county in each state, mortality rates are averaged over the three-year period 
for each station to determine the station with the maximum average mortality rate in 
the county. Daily air-quality data from that station are then used with the 2012 county 
population and the relative risk in the health effects equation described in the footnote 
to Table 7 of the main text to determine the premature mortality in the county. County 
numbers are then summed over all counties in a state to obtain state numbers. 
 
Annual rate of change in damage-weighted ambient pollution. We estimate the annual 
rate of change in damage-weighted ambient pollution levels in the future by first 
examining historical trends and then considering how the future might be different 
from the past. The EPA provides historical time series data for ambient levels of fine 
particulate matter (PM2.5), ozone (O3), sulfur dioxide (SO2), and carbon monoxide 
(CO) (http://www.epa.gov/airtrends/aqtrends.html). We use these data to estimate 
rates of change in the concentration of each pollutant over several past time periods. We 
then estimate the rate of change of a damage-weighted combination of the pollutants, 
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where the weights are our judgment based on estimates of damages by pollutant in 
Delucchi (2000). The resulting rate-of-change values are  
 

Period PM2.5 O3 SO2 CO 
Damage 
weighted 

2012-2013 -2.0% -11.0% -17.3% -5.1% -3.1% 

2009-2013 -2.1% -0.8% -12.2% -3.6% -2.5% 

2004-2013 -3.2% -1.2% -9.8% -5.8% -3.4% 

2000-2013 -3.1% -1.5% -7.5% -6.5% -3.2% 

Damage weights 90% 5% 4% 1% 
  

Next we consider that for several reasons, in the future the rate of decline in damage-
weighted ambient pollution is likely to be less, and perhaps much less, than the historic 
rates shown above. First, while emission levels will decline as stock turnover results in 
new, low-emission equipment (e.g., vehicles, power plants) replacing old, high-
emission equipment, activity levels (e.g., driving, electricity use) will also increase, and 
the net effect of these opposing factors on emissions is unclear. Second, although 
government will continue to implement new emission-control regulations, the marginal 
costs of abating pollution tend to increase while the marginal emission reductions tend 
to decrease, which means that future policies will likely result in lower emission 
reductions than have past policies. Third, a warming climate in a non-WWS world will 
exacerbate the levels and impacts of air pollution (Madaniyazi et al., 2015). 
 
With these considerations, we assume that in the future the effective damage-weighted 
ambient pollution levels decline at annual rates lower than the historical rate of 
approximately -3%/year estimated above. Specifically, we assume declines of -1.0%, -
1.5%, and -2.0% in the LCHB, medium, and HCLB cases, respectively. (A lower rate 
leads to higher benefits of pollution reduction in the 100% WWS scenario.) We assume 
that the same rates apply in all states.  
 
Change in exposed population. As discussed in the “Projection of state population and 
GDP” section below, we use U.S. Census projections of state population and other 

assumptions to estimate PS ,Y
PS ,2011

. In order to calculate the rate of change of exposure with 

population change ( xS ), we assume that the exposed population is predominantly in 
urban areas, and use Census data to calculate the ratio of the change in urban 
population to the change in total population. Presently we do not have data to 
distinguish this ratio for each state, so for now we use a single set of low-medium-high 
values for all states. According to the U.S. Census Bureau (2012), from 2000 to 2010 the 
population of the U. S. changed by 9.7%, and the population of Metropolitan Statistical 
Areas changed by 10.8%, a ratio of 1.11. Given this, we assume values for xS  of 1.14, 
1.11, and 1.08 in the LCHB, medium, and HCLB cases. (A high value of exposed 
population leads to higher benefits of pollution reduction in the 100% WWS scenario.)  
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The total cost of pollution per premature death 
  
We estimate the total pollution cost per premature death as the product of (i) the 
mortality value per premature death per se and (ii) two adjustment factors, one that 
accounts for non-mortality (i.e., morbidity) health impacts and a second that accounts 
for health impacts. The calculation is as follows:  
 
VP/D,Y =VD,Y ⋅F1 ⋅F2  
 
where  
 
VD,Y  = the value per death per se (known as the value of a statistical life, VOSL) year Y 
F1  = adjustment factor that accounts for morbidity effects of air pollution, relative to the 

mortality effect 
F2 = adjustment factor that accounts for the non-health effects of air pollution, relative 

to the mortality effect 
 
The VOSL is calculated by scaling an estimate for a base year to a value for the target 
year Y, accounting for the effects on the VOSL of increases in real per-capita income 
over time with 
 
VD,Y =VD,Y* ⋅exp

r⋅e( )⋅ Y −Y*( )   
 
where  
 
VD,Y*  = the VOSL in base year Y*  
r = the annual rate of change in income per capita  
e = the income elasticity of the VOSL  
 
VOSL in base year. Viscusi and Aldy (2003) and The National Center for Environmental 
Economics (NCEE) (2014) provide comprehensive reviews of estimates of the VOSL. 
Viscusi and Aldy’s (2003) meta-analysis of US studies indicates a mean VOSL of $6.1 
million, with a 95% confidence interval of $4.6 to $8.2 million, in year-2000 dollars, for 
the robust regression with an income elasticity of 0.48. The NCEE (2014) gives a mean 
estimate of $7.4 million with a standard deviation of $4.7 million, in year-2006 dollars 
(mean of $6.4 million in year-2000 dollars, for comparison with Viscusi and Aldy). We 
start with values of $9, $7, and $5 million (LCHB, medium, and HCLB cases) in year-
2006 dollars, and at year-2006 levels of wealth, and then update to year-2013 dollars 
using GDP implicit price deflators.  
 
Income growth and the income elasticity of VOSL.  At this point we have the VOSL in 
year-2013 dollars and, by assumption, at year-2006 levels of wealth or income. To 
estimate the VOSL in future years, we need projections of changes in income and a 
relationship between changes in income and changes in the VOSL. Projections of 
changes in income are discussed in the section “State GDP”. The income elasticity of the 
VOSL typically is assumed to be 0.4 to 0.6 (Hammitt and Robinson, 2011), and the 
NCEE (2014) recommends values of 0.08, 0.40, and 1.0.  
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Given this, our assumptions are  

 
LCHB Medium HCLB 

Input VOSL (million year-2006 dollars) 5.00 7.00 9.00 
Annual change in real GDP per capita See “State GDP” 
Income elasticity of VOSL 0.75 0.50 0.50 
 
A higher VOSL results in higher benefits for the 100% WWS scenario. 
    
Adjustment factors for morbidity and non-health impacts. Rather than perform 
detailed, original estimates of morbidity and non-health costs, we take a simpler 
approach and use other studies to scale up our VOSL to account for morbidity and non-
health costs.  Our method for this scaling is as follows.  

First we define total air-pollution costs as the sum of premature mortality, morbidity, 
and non-health costs, where each is the product of a quantity and a value per unit 
quantity (here omitting the subscripts for states S and year Y):  
 
APcost = ND ⋅VD + NM ⋅VM + NO ⋅VO  
 
where  
 
APcost = the total damage cost of air pollution 
Nj = the quantity of impact j  
Vj = the value per unit of j 
j = premature mortality (D), morbidity (M), and other non-health impacts (O) 
 
Next we expand the APcost term into a form that will allow us to scale-up our detailed 
estimates of deaths from air pollution. Specifically, we want to develop scaling factors 
related to mortality costs VD .  
 

 

APcost = ND ⋅VD ⋅
ND ⋅VD + NM ⋅VM

ND ⋅VD

⎛
⎝⎜

⎞
⎠⎟
⋅

ND ⋅VD + NM ⋅VM + NO ⋅VO

ND ⋅VD + NM ⋅VM

⎛
⎝⎜

⎞
⎠⎟

= ND ⋅VD ⋅
ND ⋅VD

ND ⋅VD

+
NM ⋅VM

ND ⋅VD

⎛
⎝⎜

⎞
⎠⎟
⋅

ND ⋅VD + NM ⋅VM

ND ⋅VD + NM ⋅VM

+
NO ⋅VO

ND ⋅VD + NM ⋅VM

⎛
⎝⎜

⎞
⎠⎟
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= ND ⋅VD ⋅ 1+ NM ⋅VM

ND ⋅VD

⎛
⎝⎜

⎞
⎠⎟
⋅ 1+ NO ⋅VO

ND ⋅VD + NM ⋅VM

⎛
⎝⎜

⎞
⎠⎟

= ND ⋅VD ⋅ 1+ NM ⋅VM

ND ⋅VD

⎛
⎝⎜

⎞
⎠⎟
⋅ 1+

NO ⋅VO

ND ⋅VD

1+ NM ⋅VM

ND ⋅VD

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 

 
For simplicity, we designate  
 

B1 ≡
NM ⋅VM
ND ⋅VD

     and     B2 ≡
NO ⋅VO
ND ⋅VD

 

 

giving  APcost = ND ⋅VD ⋅ 1+ B1( ) ⋅ 1+ B2
1+ B1

⎛
⎝⎜

⎞
⎠⎟

 At this point we can create our adjustment factors, F1 ≡ 1+ B1  and F2 ≡ 1+ B2

F1

. Now we 

have 
 
APcost = ND ⋅ VD ⋅F1 ⋅F2( )

 
 
The next task is to find the adjustment factors F1 and F2 by referring to other studies of 
morbidity and non-health costs. Designating these other studies with an asterisk, we 
have  

B1 = B1
* ⋅ B1
B1
* = B1

* ⋅

NM ⋅VM
ND ⋅VD
NM
* ⋅VM

*

ND
* ⋅VD

*

= B1
* ⋅

NM

NM
*

ND

ND
*

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⋅

VM
VM
*

VD
VD
*

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟  

 
Given that the impact functions that generate the values of N in B1  are the same as the 
functions in B1

* , and knowing that generally health effects N are linear functions of 
population and air pollution, then to a first approximation the ratio of premature deaths 

to morbidity impacts is constant; i.e., NM

NM
* ≈ ND

ND
* . However, this relationship does not 

hold in the case of valuation, so instead we establish a more generation relationship,  
 
VM
VM
* = VD

VD
*

⎛
⎝⎜

⎞
⎠⎟

K

.  
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Defining VD
VD
* ≡VD

^   (where the values are expressed in the same year dollars), we now 

have 
 

B1 = B1
* ⋅

VM
VM
*

VD
^

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

= B1
* ⋅
VD
^( )K
VD
^ = B1

* ⋅ VD
^( )K−1

 

With similar reasoning and algebra for B2 we have VO
VO
* = VD

^( )L and B2 = B2
* ⋅ VD

^( )L−1 .  

The final adjustment factors thus are   
 

F1 = 1+ B1
* ⋅ VD

^( )K−1
   and   F2 = 1+

B2
* ⋅ VD

^( )L−1

F1  
 
Morbidity and non-health impacts in other studies. Using results in McCubbin and 
Delucchi (1999), we calculate LCHB and HCLB values for B1

* (the reference ratio of 
morbidity to mortality costs) and VD

*  (the reference value of a statistical life). Using 
results in Delucchi (2000), we calculate LCHB and HCLB values for B2

* (the reference 
ratio of non-health to health costs). (The EPA [2011] estimates much lower values for B1

*  
and B2

* , but the analyses summarized in Delucchi and McCubbin (2011) are much more 
comprehensive.) McCubbin and Delucchi (1999) and Delucchi (2000) do not report 
middle or mid-point estimates, so we calculate a “medium” case here based on the 
geometric mean of the LCHB and HCLB estimates. (This gives more reasonable results 
than does using the arithmetic average.)  
 
The calculation of the morbidity multiplier ( B1

* ) is as follows:  
 
 All anthropogenic pollution, 1990 (McCubbin 
and Delucchi, 1999) 

  
LCHB 

Medium 
(geo. mean) HCLB 

 Number of premature deaths (thousands)   138.5 105.59 80.5 
 Mortality costs (billion 1991 $)   475.5 138.9 40.6 
 Other health costs   196.8 52.7 14.1 
 Value of life (VD

* ) (million 1991 $)   3.43 1.32 0.50 
 Ratio of morbidity to mortality costs ( B1

* )   0.41 0.38 0.35 
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The calculation of the non-health damage multiplier ( B2
* ) is as follows:  

 
 Motor-vehicle air-pollution costs, excluding 
upstream emissions and road dust, 1990-91 
(Delucchi, 2000) 

  

LCHB 
Medium 

(geo. mean) HCLB 
 Health costs (billion 1991 $)   283.5 73.4 19.0 
 Non-health costs (billion 1991 $)   43.1 18.7 8.1 
 Ratio of non-health to health costs ( B2

* )   0.15 0.25 0.43 
 
Exponents K and L. The exponents K and L relate changes in morbidity valuation or 
non-health-impact valuation to changes in the VOSL. If the exponent is 0.0, then 
changes in the VOSL do not affect the other values; if the exponent is 1.0, then changes 
in the VSL affect the other valuations proportionately. We believe that intermediate 
values are more reasonable, and use 0.7, 0.5, and 0.3 in our LCHB, medium, and HCLB 
cases. (High values of the exponent result in high benefits of air pollution reduction in 
the 100% WWS scenario.) 
 
Results 
 
The main text shows the calculated values of ND,S ,Y , the number of deaths due to air 
pollution in state S in year Y, adjusting for changes in exposure and ambient air quality 
to year Y.  These are multiplied by the calculated values of VP/D,Y , the total cost of 
pollution per death in year Y (230, 13.1, 7.3 million $; LCHB, medium, and HCLB), to 
produce APcostS ,Y , the damage cost of air pollution in state S year Y.  
 
 
4) THE COST OF CLIMATE CHANGE FROM FOSSIL-FUEL USE: DAMAGES 
ATTRIBUTABLE TO AND BORNE BY EACH STATE 
 
Overview 
 
We estimate two kinds of climate-change costs of fossil-fuel use: 
 
1) The cost of climate-change impacts in the U.S. and in the world attributable to 
emissions of greenhouse gases (GHGs) from the use of fossil fuels in each of the 50 
states, and  
 
2) The cost of climate-change impacts in the U.S., due to fossil-fuel use in the U.S., borne 
by each state.  
 
We estimate damages borne by each state because this represents the monetary value of 
the benefits of converting to WWS in each state and hence is an appropriate alternative 
metric to add to the other state-specific monetary benefits of converting to WWS 
(electricity-cost savings and reduced air-pollution damages). The portion of damages 
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borne by each state is equal to total climate-change damages in the U.S. from total U.S. 
emissions multiplied by each state’s share of total damages.  
 
The cost of climate-change impacts attributable to each state’s GHG emissions is the 
product of three factors, 1) estimated CO2 combustion emissions from energy use; 2) the 
ratio of total CO2-equivalent (CO2e) lifecycle GHG emissions to lifecycle CO2 
combustion emissions; and 3) the damage cost per unit of CO2e emission. All three 
factors can vary over time.  
 
The main work here is in calculating climate-change damage costs attributable to each 
state’s GHG emissions. Formally,  
 

  

CCA ,GHG ,S ,Y = EGHG ,S ,Y ⋅DGHG ,A ,Y

EGHG ,S ,Y = ECO2,S ,Y* ⋅
EGHG ,R:S∈R ,Y*

ECO2,R:S∈R ,Y*

⋅expwGHG ,R:S∈R⋅ Y−Y*( )

ECO2,R:S∈R ,Y* = ECO2,S ,Y*
S∈R
∑

 

 

  

wGHG ,R:S∈R =
ln

EGHG ,R:S∈R ,Ye

EGHG ,R:S∈R ,Ys

⎛

⎝⎜
⎞

⎠⎟

Ye −Ys

EGHG ,R:S∈R ,Y* = Ei ,CO2,R:S∈R ,Y* ⋅
Ei ,LC−CO2e ,Y*

Ei ,LC−CO2−EN ,Y*i
∑

DGHG ,A ,Y = D ^GHG ,A ,Y^ ⋅expd⋅ Y−Y^( )⋅
pGDP−IPD ,Y '

pGDP−IPD ,Y #

 

 
 
where  
 
CCA,GHG ,S ,Y = climate-change damages in area A (U.S. or world) attributable to energy-

related, lifecycle, CO2-equivalent GHG emissions from state S in year Y ($) 
EGHG ,S ,Y = emissions of GHGs from state S in year Y (metric-tons)   
DGHG ,A,Y = the present worth of climate change damages in area A in year Y per unit of 

GHG emission in year Y ($/metric-ton)   
 = emissions of CO2 from energy use (fuel combustion) in state S in base year Y* 

(metric tons) (EIA estimates for 2011; 
http://www.eia.gov/environment/emissions/state/state_emissions.cfm) 

  ECO2,S ,Y*
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EGHG ,R:S∈R,Y*= lifecycle CO2e GHG emissions from U.S. region R (containing state S) in 
base year Y* (metric-tons)   

ECO2,R:S∈R,Y*= emissions of CO2 from energy use (fuel combustion) in region R in base 
year Y* (metric-tons)  

wGHG ,R:S∈R = the rate of growth over time of GHG emissions in region R (see discussion 
below) 

Y = technology or impact target year of the analysis (2050 here, but can be any year 
from 2015 to about 2075) 

Y* = the base year of EIA CO2 emissions data (2011) 
Ys and Ye = the start year and the end year of the time range over which the rate of 

growth in emissions is calculated (2011 and 2040) 

  Ei ,CO2,R:S∈R ,Y* = emissions of CO2 from combustion of fuel i in region R in base year Y* 
(metric-tons) (EIA, 2014c) 

  

Ei ,LC−CO2e ,Y*

Ei ,LC−CO2−EN ,Y*
= the ratio of lifecycle, CO2-equivalent GHG emissions from fuel i to life-

cycle combustion emissions of CO2 from fuel i, in base year Y* (see discussion 
below) 

D ^GHG ,A,Y ^ = reference climate-change damages in area A in year Y^ per unit of GHG 
emission in year Y^ ($/metric-ton) (see discussion below) 

d = the rate of growth over time of damages per unit of GHG emissions (see discussion 
below) 

Y^ = the reference year of estimates of damages per unit of CO2e emission (see 
discussion below) 

Y’ = designated price year (2013 here, but can be any date for which the GDP implicit 
price deflator is known) 

  

pGDP−IPD ,Y '

pGDP−IPD ,Y #
= the ratio of prices in our designated price year Y’ to prices in the price-year 

Y# of the reference CO2 damage-cost analysis (calculated using GDP implicit 
price deflators)  

 
For   EGHG ,R:S∈R ,Ye  and   EGHG ,R:S∈R ,Ys , substitute Ye or Ys for Y* in the equation for   EGHG ,R:S∈R ,Y* .  
 
Subscripts:  
 
A = relevant area for which damages are estimated (U.S. or world) 
S = state in the U.S. 
GHG = lifecycle CO2-equivalent emissions of all greenhouse gases 
CO2 = carbon dioxide per se (as distinguished from other GHGs, or the CO2-equivalent 

of GHGs) 
R = region of the U.S. in the EIA’s estimates of energy-related CO2 emissions (New 

England, Middle Atlantic, East North Central, West North Central, South 
Atlantic, East South Central, West South Central, Mountain, and Pacific) 

LC = lifecycle of a fuel from feedstock production through end use 
i  = fuels for which the EIA estimates CO2 emissions (oil, natural gas, coal, other) 

natural gas, other) 
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GDP-IPD = GDP implicit price deflator 
 
Important reminder: when we say “climate change damages in year Y,” we mean “the year-Y 
present worth of the future stream of damages from emissions in year Y.” 
 
Lifecycle CO2e emissions of all GHGs from all sources relative to lifecycle CO2 
emissions from energy use 
 
As mentioned above, the EIA projects CO2 emissions from the combustion of coal, oil, 
natural gas, and other fuels in 9 regions of the U.S. from 2011 to 2040. However, the use 
of fossil-fuels also produces a range of GHGs other than CO2 and also a small amount 
of CO2 from non-combustion processes. To fully account for the climate impact of all 
GHG emissions associated with fossil-fuel energy use, we use the Lifecycle Emissions 
Model (LEM) (Delucchi et al., 2003, unpublished updates; Delucchi, 2005) to estimate 
the ratio of lifecycle CO2e GHG emissions to lifecycle combustion-CO2 emissions for 
coal, oil, and natural gas. The LEM estimates emissions of greenhouse gases and urban 
air pollutants over the complete lifecycle of fuels, materials, vehicles, and infrastructure 
for the use of transportation fuels and electricity, as follows:  
 
Lifecycle stages: electricity end use; electricity transmission and distribution; electricity 
generation; transportation of electricity-generation feedstocks (e.g., coal); and 
production of electricity generation feedstocks.  
  
Sources of emissions: combustion of fuels; evaporation or leakage of energy feedstocks or 
finished fuels; venting, leaking or flaring of gas mixtures (e.g., venting of coal bed gas 
from coal mines); fugitive dust emissions; and chemical transformations that are not 
associated with burning process fuels (for example, the scrubbing of sulfur oxides from 
the flue gas of coal-fired power plants). 
 
Pollutants/GHGs  
carbon dioxide (CO2) particulate-matter (PM) 

combustion, black carbon (BC) 
carbon in (in NMOC, CO, CH4, soil) PM combustion, organic matter (OM) 
nonmethane organic compounds 

(NMOCs) (weighted by O3 potential) PM combustion, dust-like 
methane (CH4) PM all else 
carbon monoxide (CO ) PM non-combustion, dust 
nitrous oxide (N2O) hydrogen (H2) 
nitrogen oxides (NO2) sodium hexafluoride (SF6) 
sulfur oxides (SO2) chlorofluorocarbons (CFC-12) 
ammonia (NH3) hydrofluorocarbons (HFC-134a) 
  
The LEM estimates emissions of each pollutant individually, and also converts all of the 
pollutants into CO2-equivalent greenhouse-gas emissions. To calculate total CO2-
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equivalent emissions, the model uses internally developed CO2-equivalency factors 
(CEFs) that convert mass emissions of all of the non- CO2 gases into the mass amount of 
CO2 with the equivalent present worth of damages from climate change.  

 
The LEM projects energy use, emissions, and other factors out to the year 2050.  
 
For this project, we used the LEM to calculate two quantities for each year from 2011 to 
2050: #1) total lifecycle CO2e emissions of GHGs from generic coal, oil, natural-gas, and 
other-fuel use; and #2) lifecycle combustion emissions of CO2 from generic coal, oil, 
natural-gas, and other-fuel use. For generic coal we use the lifecycle of coal for 
electricity generation; for generic oil we used the average of the lifecycle of oil for 
gasoline and oil for distillate fuel; for generic natural gas we use the lifecycle of natural 
gas for commercial heating; and for generic other-fuel (a trivial fraction of the total) we 
y4assume the values for natural gas. The ratio of quantity #1 to quantity #2 is the 

parameter 
  

Ei ,LC−CO2e ,Y

Ei ,LC−CO2−EN ,Y
 . The resultant LEM-calculated ratios for 5-year intervals from 

2011 to 2050 are  
 

 
2011 2015 2020 2025 2030 2035 2040 2045 2050 

   Petroleum  1.21 1.11 1.11 1.11 1.11 1.09 1.09 1.09 1.09 
   Natural Gas 1.43 1.44 1.44 1.43 1.43 1.42 1.41 1.40 1.39 
   Coal 0.81 0.88 0.94 0.97 1.00 1.01 1.02 1.02 1.02 
   Other  1.43 1.44 1.44 1.43 1.43 1.42 1.41 1.40 1.39 
 
 
The ratio for petroleum decreases as black-carbon emissions from vehicles and fuel-
cycle methane emissions decrease over time.  The ratio for coal is less than one until the 
year 2030 because of the negative forcing caused by sulfur oxide and nitrogen oxide 
emissions from coal power plants. As these emissions decline with improved emission 
controls over time, the negative forcing decreases and the ratio increases.  
 
The damage cost per unit of CO2e GHG emission 
 
Several studies, including some important recent meta-analyses, estimate the damage 
cost of CO2e GHG emissions, often referred to as the Social Cost of Carbon (SCC) (Table 
S3). Most studies recognize, even if only informally or qualitatively, that there is some 
non-trivial possibility of severe impacts of climate change and a correspondingly very 
high SCC. The main point of contention is the plausible lower bound on the SCC.  
 
As shown in Table S3, the widely referenced FUND and DICE models estimate very 
small lower-bound estimates under some sets of assumptions regarding discount rates, 
risk aversion, equity weighting, extreme impacts, uncertainty, and other factors. 
However, in a recent review and meta-analysis, van den Bergh and Botzen’s (2014) 
argue against the assumptions that lead to the lowest estimates of SCC, and make a 
persuasive case that the lower bound of the SCC should not be less than $125/tonne-
CO2. They conclude that “the lower bound…of US 125 per tCO2 is far below various 
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estimates found in the literature that attribute a high weight to potentially large climate 
change impacts…[and} therefore can be considered a realistic and conservative value” 
(p. 256). (See also Pindyck, 2013, and Stern, 2013). In support of this, Moore and Diaz 
(2015), in another recent re-analysis of the SCC, find that incorporating the effect of 
climate change on the rate of economic growth – a feedback typically not included in 
standard low-end estimates of the SCC – can dramatically increase the SCC to hundreds 
of dollars per ton and higher (Table S3).  
 
The SCC of emissions in a given year is also likely to increase over time as GDP, 
atmospheric GHG levels, and average temperatures increase (Ackerman and Stanton, 
2012; Moore and Diaz, 2015). The Ackerman and Stanton (2012) estimates shown in 
Table S3 increase from 2010 to 2050 at 2.0%/year in the low-SCC case, 1.6%/year in the 
mid-case, and 1.4%/year in the high-SCC case.  
 
On the basis of the estimates of Table S3 and the discussion above, we assume the 
following:  
 
 LCHB Medium HCLB 
Global SCC in 2010 (2007-$) 600 250 125 
Annual change in SCC 1.2% 1.5% 1.8% 
U.S. share of global damages 10% 8% 5% 
 
A high value of the SCC results in higher benefits for the 100% WWS scenario. 
However, if the SCC is at its high value in 2010, then a numerically high annual rate of 
change results in unreasonably high values in the future. Hence the high starting value 
of the SCC is paired with the low rate of change.  
 
 
The incidence of climate-change impacts across U.S. states 
 
Recently Houser et al. (2014) analyzed in detail the per-capita damage costs of climate 
change in every state in the U.S. They calculate the annual costs of coastal damages, 
increased energy expenditures, crop loss, reduced labor productivity, increased crime, 
and increased mortality, in the periods 2020-2039, 2040-2059, and 2080-2099, for three 
emissions scenarios: RCP 8.5 (relatively high emissions, CO2 at 940 ppm by 2100; 
“business as usual,”), RCP 4.5 (moderate emissions growth, CO2 at 550 ppm by 2100), 
and RCP 2.6 (aggressive emission reduction; CO2 below 450 ppm by 2100). (They also 
present another mid-range scenario, RCP 6.0, but do not provide estimates of coastal 
damages – one of the larger categories – for this scenario.) For each type of damage, 
period, and emissions scenario, they report the 5th, 17th, 50th, 83rd, and 95th percentiles of the 
range of damage estimates.  
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Table S3. Studies of the Social Cost of Carbon (SCC) 
 

Authors 
Moore and Diaz 

(2015) 
Ackerman and Stanton 

(2012) 
van den Bergh and 

Botzen (2014) 
Johnson and Hope 

(2012) Howarth et al. (2014) Antoff et al. (2011) Tol (2010) 
Model gro-DICE DICE meta-analysis DICE IAM using DICE FUND FUND 
Emission year 2015-2100 2010, 2050 near term? 2010 2010 2010-2019 2010?  
Dollar year 2005 2007 2010? 2007 2005 1995 1995 
 Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High 
World SCC 
($/tonne-CO2) 

~200  1000+ ~45, 
~100 

~230, 
~430 

~890, 
~1520 125 -- -- -1 145 -- 10 -- >500 0.5 10 ~180 ~0 1.3 11 

Discount rate 
(DR) n.r. n.r. n.r. 3% 1.5% or 

3% 1.5% avg. -- -- 5% 2.5% -- n.r. --  n.r. n.r. n.r. n.r. n.r. n.r. n.r. 

Pure rate of time 
preference 3% 1.5% 0.1% n.r. n.r. n.r. n.r. -- -- 3.2% 1.1% -- 1.5% -- 1.5% 3% 1% 0.1% 3% 1% 0% 

Equity 
weighting? no no no n.r. n.r. n.r. no? -- -- no yes -- no? -- no? no no ave.* no no yes 

Risk aversion 
rate no? no? no? n.r. n.r. n.r. n.r. -- -- no no -- 2.0 -- 5.6 no no no 1.5 1.5 15 

Extreme climate 
impacts? part. no part. yes part. -- -- no no -- 

no  
(thin 
tail) 

-- 
yes    
(fat  
tail) 

no no no no no no 

U.S. % of world 
SCC n.r. n.r. n.r. n.r. n.r. 33% 13% < 10% n.r. 8.5% n.r. 

Remarks 

Authors did not 
estimate explicit 

low, mid, and 
high values, but 
rather estimated 

the importance of 
including 

feedbacks between 
climate change 
and the rate of 

economic growth.  

SCC estimated as a 
function of the DR, 
climate sensitivity 
(CS), and form of 
damage function 

(DF). Our mid case 
includes all combos of 

DR, CS, and DF 
except low-low (our 
low) and high-high 

(our high). 

SCC is equal to 
$41/tonne – the 

average reported in 
a meta-analysis – 

plus the average of 
separate 

“surcharges” for 
uncertainty, 

extreme damages, 
and risk aversion.  

Authors did not 
analyze what 

would be a “high” 
cost case (a low 

rate of time 
preference with 
equity weights). 

With high risk 
aversion rate, SCC 

decreases with 
increasing emission 
control rate (ECR): 
when ECR > 40%, 

SCC <10. 

SCC is higher with 
U.S.-based equity 
weights than with 

global equity weights. 
(*= global equity 

weights)  

High estimates are 
based on 

“illustrative” 
parameter values. 

 
IAM = Integrated Assessment Model; SCC = social cost of carbon; n.r. = not reported; part. = partially. “Extreme climate impacts?” includes 
extreme climate sensitivity to emissions, irreversible impacts, high-cost/low-probability impacts, and potentially large but difficult to quantify 
damage categories. Note that here “low” and “high refer to values of the SCC itself, and not to the LCHB and HCLB scenarios established here.
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For each state we sum the Houser et al. (2014) per-capita damages for all six impacts 
and then multiply the resultant per-capita total damage by the state population (as used 
in the Houser et al., [2014] analysis) to produce an estimate of total $ damages in the 
state, for each emission scenario, period, and percentile. With these total $ damages by 
state we then calculate each state’s share of the total 50-state damages.  
 
Figure S1 shows each state’s share of the 50th percentile damages, by period and 
emission scenario. Because coastal damage is one of the largest categories in the Houser 
et al. (2014) analysis, states with high coastal damages have relatively high shares of 
total damages. For our purpose of estimating the incidence of damages across states in 
the U.S., we use the calculated state shares of total damages for the RCP 8.5 scenario for 
the period 2040-2059, with the calculated 17th-percentile shares as our “low” case, the 
50th-percentile shares as our “middle” case, and the 83rd-percentile shares as our “high” 
case (Table S4). 
 
There are two minor caveats and one major caveat to our use of the Houser et al. (2014) 
results. The first minor caveat is that the distribution of damage costs for each state (the 
basis of the 5th, 17th, 50th, 83rd, and 95th percentile results) is calculated independently for 
each state, such that the set of conditions that produces, say, the 17th percentile result in 
state A is not necessarily the set that produces the 17th percentile results in state B. This 
means that, technically, adding up the Xth  percentile results for each state is 
inconsistent. However, it appears that this inconsistency is of minor consequence. In 
most cases, for the 17th, 50th, and 83rd  percentiles, the sum of individual state damages at 
each percentile is not drastically different from the Houser-et al. (2014) reported total 
national damages at the same percentile.  
 
The second minor caveat is that we estimate the distribution of damages across states 
based on the Houser et al. (2014) estimates for the period 2040-2059, whereas the unit 
damage-cost parameter (to which we apply the state-distribution shares) estimates the 
present worth of damages over a much longer period. However, we believe that if one 
were to estimate a present-worth weighted distribution of damages for, say, the period 
2015 to 2100, it would not different dramatically from the 2040-2059 distribution from 
Houser et al. (2014). 
 
The major caveat is that we multiply the Houser et al. (2014)-based state shares of total 
climate-change costs in the U.S. by other estimates of climate-change costs for the whole 
U.S., and it is likely that methods and assumptions used to estimate damages in these 
other studies are different from those in the Houser et al. (2014) study. 
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Figure S1. State shares of 50th percentile total U.S. climate-change costs by period and emission scenario (from Houser et al., 2014).
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Table S4. Climate-change benefits received by each state as a result of switching to 
WWS in the U.S., business-as-usual emissions scenario, 2040-2059 (% of total avoided 
damages in U.S.) 
 
 
 

Low 
damages 

Middle 
damages  

High 
damages 

 

 

Low 
damages 

Middle 
damages  

High 
damages 

AL 1% 1% 1%  MT -1% 0% 0% 
AK 0% 0% 0%  NE -2% 0% 0% 
AZ 1% 1% 2%  NV 0% 0% 0% 
AR 0% 1% 1%  NH -1% 0% 0% 
CA 4% 7% 6%  NJ 13% 8% 6% 
CO -1% 0% 0%  NM 0% 0% 0% 
CT -1% 0% 0%  NY 13% 9% 7% 
DC 0% 0% 0%  NC 2% 2% 2% 
DE 1% 0% 0%  ND 0% 0% 0% 
FL 60% 36% 28%  OH -3% 0% 1% 
GA 3% 3% 3%  OK 0% 1% 1% 
HI 0% 0% 0%  OR -2% 0% 0% 
ID -1% 0% 0%  PA -3% 0% 1% 
IL -4% 0% 2%  RI 0% 0% 0% 
IN -2% 0% 1%  SC 0% 1% 2% 
IA -3% 0% 0%  SD -1% 0% 0% 
KS 0% 0% 1%  TN 0% 1% 1% 
KY 0% 0% 1%  TX 15% 11% 11% 
LA 18% 11% 9%  UT -1% 0% 0% 
ME -1% 0% 0%  VT 0% 0% 0% 
MD 0% 1% 1%  VA 7% 4% 4% 
MA 3% 2% 2%  WA -3% -1% 0% 
MI -4% 0% 1%  WV 0% 0% 0% 
MN -3% 0% 0%  WI -3% 0% 0% 
MS 0% 1% 1%  WY 0% 0% 0% 
MO -1% 1% 1%  ALL 100% 100% 100% 
 
Source: Our assumptions and calculations based on Houser et al. (2014). See the 
discussion in the text.  
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5) EARNINGS FROM NEW CONSTRUCTION AND OPERATION JOBS IN A 100% 
WWS WORLD 
 
Calculation of earnings 
 
Annual earnings from new construction and operation jobs are the product of the 
number of jobs and the annual earnings per job. The number of jobs is the product of a 
jobs/installed-MW factor, from the National Renewable Energy Laboratory (NREL) 
Jobs and Economic Development Impact (JEDI) models (Table S5),  and the total 
installed MW assumed here.  
 
 
Table S5. Jobs per MW of installed power for WWS technologies 
 

Technology Jobs/MW from JEDI model 
  Construction Operation 
  CA WA Average CA WA Average 
Onshore wind 0.10 0.10 0.10 0.15 0.15 0.15 
Offshore wind 0.18 0.16 0.17 0.66 0.60 0.63 
Wave device 0.35 0.33 0.34 2.42 2.31 2.37 
Geothermal plant 0.48 0.22 0.35 0.07 0.16 0.12 
Hydroelectric plant 0.30 0.30 0.30 0.30 0.30 0.30 
Tidal turbine 0.30 0.29 0.30 2.32 2.22 2.27 
Res. roof PV system 1.61 1.37 1.49 0.48 0.44 0.46 
Com. roof PV system 1.77 1.41 1.59 0.33 0.32 0.32 
Solar PV plant 0.98 0.81 0.90 0.30 0.28 0.29 
CSP plant  0.26 0.26 0.26 0.19 0.19 0.19 
 
Source: JEDI models (http://www.nrel.gov/analysis/jedi/). CSP = concentrated solar power 
(solar thermal). 
 
 
Earnings per year are calculated by scaling up JEDI earnings figures to our price (dollar) 
year and to account for effects of changes in wages and labor-hours/MW over time as 
follows:  
 

EJ = EJEDI ,J ⋅
pGDP−IPD,YB
pGDP−IPD,JEDI

⋅expw⋅h⋅Y  
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where  
 
EJ  = Annual earnings for job type J ($/year) 
EJEDI ,J  = Annual earnings in the JEDI model ($/year; shown below) 
pGDP−IPD,Y '
pGDP−IPD,JEDI

= the ratio of our designated price-year basis Y’ to the JEDI price-year basis 

(2010) (calculated using GDP Implicit Price Deflators) 
w  = rate of change in real wages, over time (we assume wages grow with our mid-

range estimate of real GDP/capita; see discussion in section “State GDP” below) 
h = rate of change in hours per MW, to account for improvements in production 

efficiency (we assume -1.0%/year) 
Y = the period of time over which the changes in wages and hours/MW occur (we 

assume the midpoint of the entire 40-year phase-in period; i.e., 20 years) 
 
The raw, unscaled earnings values (EJEDI ,J ) from JEDI   and the final scaled values (EJ ) 
are shown in Table S6.  
 
 
Table S6. Earnings in construction and operation jobs for WWS technologies 
 

  Earnings ($1000)/year 
  Construction Operation 

  Unscaled, from JEDI Scaled Unscaled, from JEDI Scaled 
  CA WA Average Average CA WA Average Average 
Onshore wind 66.79 59.61 63.20 66.44 110.60 58.19 84.40 88.72 
Offshore wind 73.68 71.73 72.71 76.44 67.28 64.10 65.69 69.06 
Wave device 67.63 64.42 66.02 69.41 67.59 65.80 66.70 70.12 
Geothermal plant 64.03 46.49 55.26 58.10 104.48 105.99 105.23 110.63 
Hydroelectric plant 65.09 61.91 63.50 66.76 72.60 66.46 69.53 73.10 
Tidal turbine 67.56 64.28 65.92 69.30 67.69 65.96 66.83 70.26 
Res. roof PV system 50.86 52.23 51.54 54.19 56.74 58.42 57.58 60.53 
Com. roof PV system 52.65 54.46 53.55 56.30 59.20 58.42 58.81 61.83 
Solar PV plant 50.76 52.07 51.42 54.05 56.79 58.25 57.52 60.47 
CSP plant  91.87 91.87 91.87 96.59 63.05 63.05 63.05 66.29 
 
Source: JEDI models (http://www.nrel.gov/analysis/jedi/).  
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Check on consistency of labor costs implied by our earnings estimates with our 
estimated capital costs and O&M costs 
 
Because the cost of labor is a component of estimates of capital costs and O&M costs, 
one ideally would use a single set of labor costs to estimate capital costs, O&M costs, 
and earnings from job creation. However, because our estimates of capital costs and 
O&M costs are not disaggregated into labor and materials components, we instead will 
check whether the labor-cost figures used in our earnings estimates are consistent with 
our overall capital cost and O&M cost estimates. We expect labor costs to be a small 
fraction of capital costs and a large or very large fraction of O&M costs for WWS 
technologies. As shown in Table S7, this indeed is what we find.  
 
 
Table S7. Estimated construction costs and labor costs for WWS technologies 
 

  Construction cost  Operating cost 

  
Labor 

($/kW) 
Labor 
/total Labor  ($/kW/yr) Labor/total 

Technology Average Avg/avg Low Average High Low/high Avg/avg High/low 

Onshore wind 9.8 1% 8.9 13.1 17.4 22% 35% 50% 

Offshore wind 26.0 1% 40.1 43.0 46.0 25% 32% 43% 

Wave device 52.1 1% 158.3 164.0 169.9 32% 51% 121% 

Geothermal plant 70.4 2% 8.0 13.0 18.0 3% 6% 8% 

Hydroelectric plant 59.4 2% 20.7 21.7 22.6 57% 69% 87% 

Tidal turbine 45.5 1% 152.1 157.5 162.9 76% 126% 326% 

Res. roof PV system 14.0 0% 25.9 27.4 28.9 86% 100% 116% 

Com. roof PV system 33.2 1% 19.1 19.6 20.1 96% 119% 155% 

Solar PV plant 71.8 4% 16.6 17.5 18.3 66% 78% 92% 

CSP plant  62.4 1% 12.3 12.3 12.3 10% 11% 11% 
 
Solar PV plant uses values for crystalline tracking. CSP = concentrated solar power (solar thermal). 
"Labor ($/kW)" is based on the average unscaled JEDI earnings (updated to the appropriate price year) over the 

average construction time for the technology. 
"Labor/total" is equal the Labor $/kW divided by our estimated base-year capital cost in $/kW. 
"Labor ($/kW/yr)" is based on the min,average, or max unscaled JEDI earnings (updated to the appropriate price 

year). 
"Labor/total" is equal to Labor $/kW/yr divided by total O&M costs expressed in $/kW/yr. We have converted 

variable O&M, original in $/kWh, to $/kW/yr. Here, Low/high is low labor costs divided by high total O&M, 
and High/low is high labor costs divided by low O&M. 
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As indicated here, the labor costs used in the earnings analysis are less than 5% of 
capital costs. Labor costs typically are a much larger fraction of O&M costs, and account 
for the bulk of O&M costs for PV plants, which we expect.  
 
There are a few combinations where the labor costs from our earnings analysis in this 
section constitute more than 100% of O&M costs as estimated in our “cost of delivered 
electricity section, but with one exception, this generally does not concern us.  In one 
case for wave devices and two cases for tidal turbines, the labor cost exceeds 100% of 
the O&M cost, but this is not surprising given the enormous uncertainty in estimates of 
O&M costs for this non-commercial technology. In one case for residential rooftop PV – 
high labor costs and low O&M costs – labor costs exceed O&M costs, but only by a 
small amount, and in the other two (more likely) cases labor costs do not exceed 100%.  
 
The only case of modest concern is for commercial rooftop PV, where even the average 
labor cost estimated here exceeds average O&M cost. Closer examination of the 
underlying data reveals that this is because our O&M cost estimates for commercial 
rooftop PV are low relative to the estimates for residential rooftop PV and utility-scale 
PV.  
 
 
6) PROJECTION OF STATE POPULATION AND GDP 
 
State population 
 
We use state population estimates for 2000, 2005, 2010, 2011-2014, and 2015 to 2075 in 5 
year increments. The sources of our estimates are 
 
2000 and 2005: population estimates by the U. S. Bureau of the Census 
(http://www.census.gov/popest/data/intercensal/state/state2010.html).  
 
2010-1014: population estimates by the U. S. Bureau of the Census 
(http://www.census.gov/popest/data/state/totals/2014/index.html).  
 
2015: extrapolate from 2011-2014 trend.  
 
2020 to 2075 in five year increments: see discussion in the next section.  
 
Projection of state population to 2075. In 2006, the U. S. Bureau of the Census projected 
state populations from 2010 to 2030 (US Census, Table 6 Interim Projections: Total 
Population for Regions, Divisions, and States: 2000 to 2030. 
http://www.census.gov/population/projections/data/state/projectionsagesex.html.) 
With those Census projections, we calculate the annual rate of change over each five-
year period from 2010 to 2030, for each state. We then fit a trend line to the series of 
five-year annual rates. Assuming that the annual rate of population growth actually 
changes nonlinearly rather than linearly with time, we multiply the slope of the trend 
line by an exponential decay function. We then use this decayed trend line to project 
each state’s population from 2020 to 2075. We pick the value of the decay-exponent so 
that our resultant projections of U.S. total population match the population projections 
of the EIA (2014c). Formally, 
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PS ,Yt = PS ,Yt−1 ⋅exp

gYt ,Yt−1⋅ Yt−Yt−1( )

gYt ,Yt−1 = b2010−2030 +m2010−2030 ⋅Yt( ) ⋅exph⋅ Yt−2015( )

m2010−2030 =
Yt −Y2010−2030( ) ⋅ gt − g2010−2030( )

2010

2030

∑

Yt −Y2010−2030( )2
2010

2030

∑

b2010−2030 = Y2010−2030 −m2010−2030 ⋅Y2010−2030

 

 
 
where  
 
PS ,Yt  = the population in state S in year Yt  
t-1 = the period prior to t 
gYt ,Yt−1  = the annual rate of change in population between year Yt  and year Y t−1 , 

calculated as a linear extrapolation based on the growth rates between 2010 and 
2030, multiplied by an exponential decay (non-linearizing) factor.  

Y2010−2030 = the average years between 2010 and 2030 (the period over which the Census 
projected each state’s population) 

g2010−2030= the average of the five-year projected population growth rates between 2010 
and 2030.  

h = exponent determining the rate of decay of the population growth rate, away from 
the linear trend derived from the Census projections, after 2015 (we assume a value 
of -0.0095 resulting in modest decay that makes the resultant projected population of 
the U.S. close to the values projected by the EIA [2014c]). 

 
State GDP 
 
State GDP is calculated as the product of GDP per capita and state population. The state 
population is discussed above. The International Monetary Fund (World Economic 
Outlook Data Base, 
http://www.imf.org/external/pubs/ft/weo/2014/02/weodata/index.aspx.), 
CitiGroup Global Markets (Buiter and Rahbari, 2011), and the EIA (2014c) project 
GDP/capita, and HSBC Global Research (Ward, 2012) projects income per capita. The 
projections range from between 0.6%/year to 2.1%/year, depending on the projection 
period, with an average of around 1.6%/year. We believe however that lower values 
are more realistic. We assume the following values for all states:  
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LCHB Medium HCLB 

Annual change in real GDP per capita 1.50% 1.25% 1.00% 
 
A higher rate of change in GDP per capita results in a higher value of life, which results 
in higher benefits for the 100% WWS scenario. 
 
 
7) THE NATIONAL-AVERAGE LEVELIZED COST OF ELECTRICITY BY TYPE OF 
GENERATOR 
 
To estimate the national-average levelized cost of electricity by type of generator we 
expand and update the calculation documented in Delucchi and Jacobson (2011).  Table 
S13 shows our complete set of assumptions and intermediate calculated values.  In this 
section we document our assumptions and tabulate and annotate the main literature 
used in our analysis (Table S14).  
 
Overview of the method 
 
We estimate the fully annualized cost per delivered kWh from new capacity put in 
place in a near-term base year and a long-term target year, for the BAU scenario and the 
100% WWS scenario. For the near-term base year, we estimate the costs of conventional 
(mainly coal, gas, and nuclear) and wind, water, and solar (WWS) technologies as part 
of present-day electricity systems. For the long-term target year, we estimate the costs of 
conventional, non-WWS technologies in the context of the U. S. Energy Information 
Administration's (EIA) Annual Energy Outlook 2014 (EIA, 2014a, 2014c, 2014e) reference-
case projections (our BAU), and estimate the costs of WWS technologies for both the 
BAU and the 100% WWS scenario. (The costs of WWS technologies in a 100% WWS 
system will be different from the costs of WWS technologies in a conventional, EIA-
reference-case system because the 100% WWS system will require different measures 
for balancing supply and demand but also will have different costs due to economies of 
scale and learning associated with greater development and use of technology.) We 
assume that the benefit stream – the provision of electricity services – is the same in the 
EIA reference case (BAU) and the 100% WWS scenario, and hence the same for any 
particular plant/technology type within the electricity-generation scenarios.  
 
We first estimate national-average costs by technology, as described in this section, and 
then in a subsequent section adjust these to estimate regional and state-level costs by 
accounting for regional differences in initial costs, fuel costs and capacity factors. We 
calculate regional adjustments for gas, coal, oil, wind, and solar plants. For the fossil-
fuel plants, hydropower, and geothermal plants, the regional adjustment accounts for 
differences in initial costs and fuel costs, and for the wind and solar plants the regional 
adjustment accounts for differences in initial costs and capacity factors. We do not 
account for regional differences in the cost of nuclear power.  
 
The annualized cost per kWh is equal to the annualized initial cost plus annualized 
periodic costs and transmission and distribution-system costs, divided by annual kWh 
output. The annualized initial cost is based on the actual physical depreciation (loss of 
capacity) over time, accounting for construction interest cost prior to operation, major 
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capital expenditures to extend the life of the plant, and salvage value and 
decommissioning cost at end of life. Annual periodic costs are calculated as the present 
worth of the actual periodic cost stream, annualized over the operating life. 
Transmission and distribution system costs include the costs of measures needed to 
balance supply and demand in 100% WWS systems.  
 
The annual kWh output is calculated by multiplying the rated kW capacity by the 
fraction of the 8760 hours in a year that the plant operates at capacity (the capacity 
factor). The capacity factor is estimated by considering the characteristics of the entire 
electricity generating system and, in the case of wind and solar power, the 
characteristics of the wind and solar resources and the performance of the technology. 
For the EIA reference-case (the basis of our BAU), we assume that the entire electricity 
generation system operates as projected in the EIA's Annual Energy Outlook 2014 (EIA, 
2014a, 2014c, 2014e). For the 100% WWS case, we assume what we believe is a plausible, 
reliable, electricity generation system, based partly on analyses by others and partly by 
our own analysis in Jacobson et. al (2015). (Note though that we have not done a least-
cost optimization.)  
 
Weighted LCOE vs. costs actually incurred in a particular year. Note that we estimate 
the levelized costs (going forward) of new systems put in place in the target year, and 
then estimate national or regional system-wide average costs by weighting each 
generator’s LCOE by its assumed share of generation in the target year. This method, 
which we will call LCOE-TY (for “levelized cost of energy in the target year”) facilitates 
comparison of the costs of different combinations of technology choices in the future. 
However, for two reasons, this method generally will not give the same relative overall 
system-average cost results as will an analysis of the actual system-wide costs incurred 
in the target year (ASC-TY) given a particular plan for phasing in various technologies 
over time, even when the target-year generation shares and capacity factors are the 
same in both cases (LCOE-TY and ASC-TY) The two reasons are  
 
1) The in-place capacity of each technology can rise or fall over time, meaning that the 
actual total capital costs incurred in the ASC-TY case will be different from the total 
capital costs implied by the capacity factors and unit capital costs in the LCOE-TY case.  
 
2) Capital costs, maintenance costs, and performance change over time, due to learning 
and scale economies, with the result that the actual costs and performance of the system 
in place in TY will not be the same as the going-forward costs and performance of new 
systems installed in TY.  
 
Put another way, the two methods (LCOE-TY and ASC-TY) will give the same relative 
overall costs only in the case where the total installed capacity, performance, and costs 
of each technology are constant over time.  
 
In our case, the LCOE-TY method differs from ASC-TY method on account of both 
reasons mentioned above. For example, the EIA (2014c) projects that over time natural-
gas fired capacity increases substantially and coal-fired capacity decreases. This means 
that our LCOE-TY method, relative to the ASC-TY method  
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• overestimates the capital-cost component of coal-fired generation but underestimates 
the capital-cost component of gas-fired generation;  

 
• underestimates the maintenance-cost component of coal-fired generation but over-

estimates the maintenance-cost component of gas-fired generation (because 
maintenance costs increase with age); and 

 
• overestimates the fuel efficiency and hence underestimates the fuel cost of gas and 

coal-fired generation (because efficiency improves over time, with the result that 
efficiency of new plants built in TY will be higher than the efficiency of the fleet in 
TY).  

 
Sources of data used in our analysis 
 
With four exceptions, our analysis of national-average costs by technology type, shown 
in Table S13, is based on the data summarized in Table S14 and the information 
discussed in the following sections here. The four exceptions are: we estimate costs for i) 
“combined-cycle conventional” and ii) “combined-cycle advanced with carbon capture” 
relative to costs for “combined-cycle advanced,” using relative costs from the EIA 
(2014a, Table 8.2) and our judgment; and we estimate costs for iii) “municipal solid 
waste” and iv) “distributed generation” based on the EIA (2014a, Table 8.2) and our 
judgment. However, for these four we do estimate capacity factors as described below, 
using EIA AEO projections. We also assume that municipal solid waste feedstock is 40% 
of the cost of biomass feedstock.  
 
Note also that we treat the Table S14 estimates for diesel generators as proxies for diesel 
steam turbines.   
 
Important parts of our method 
 
We calculate the levelized cost of electricity as the sum of the annualized initial costs, 
annualized fixed operating and maintenance (FOM) costs, variable O&M costs, fuel 
costs, and transmission and distribution costs, using (as we derive in the next 
subsection) a continuous rather than a discrete-interval annualization, 
 

  

Cj ,US ,Y ,W =
CAI , j ,US ,Y ,W +CFOM , j ,US ,Y ,W

CFj ,US ,Y ,W ⋅8760
+CVOM , j ,US ,Y +CFUEL , j ,US ,Y +CTD , j ,US ,Y ,W

CAI , j ,US ,Y ,W =
r ⋅CI , j ,US ,Y ,W

1− e−r⋅t

CFUEL , j ,US ,Y =
CFUEL*, j ,US ,Y

eff j ,US ,Y

 

 
where  
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  Cj ,US ,Y ,W  = the levelized cost of delivered electricity from technology j in the United 
States in year Y  in scenario W ($/kWh) (Table S13) 

  CAI , j ,US ,Y ,W  = the annualized initial cost of technology j in the U.S. in year Y in scenario W 
(  $/kWP-NM/year ) (Table S13) 

  CFOM , j ,US ,Y ,W  = the fixed operating and maintenance (OM) cost of technology j in the U.S. 
in year Y in scenario W ( $/kWP-NM/year ) (Table S13; discussed below) 

  CVOM , j ,US ,Y ,W  = the variable operating and maintenance (OM) cost of technology j in the 
U.S. in year Y in scenario W ($/kWh) (Table S13; discussed below) 

  CFUEL , j ,US ,Y  = the cost of fuel for technology j in the U.S. in year Y ($/kWh) (Table S13) 

  CTD , j ,US ,Y ,W  = the transmission and distribution-system (TD) cost of technology j in the 
U.S. in year Y in scenario W ($/kWh) (Table S13; discussed below) 

  CFj ,US ,Y ,W  = the capacity factor for technology j in the U.S. in year Y in scenario W 

 

kWhac-grid/year
kWP-NM ⋅8760

⎛

⎝⎜
⎞

⎠⎟
 (discussed below) 

  kWhac−grid /year  = kWh of ac electrical energy delivered to the grid per year 

 kWP−NM  = kW of rated “name-plate” peak power (see discussion immediately below) 
8760 = hours per year 

  CI , j ,US ,Y ,W = the initial cost of technology j in the U.S. in year Y in scenario W ( $/kWP-NM ) 
(discussed below) 

r = the annual discount rate (discussed below) 
t = the lifetime of the technology before replacement (years) (Table S13; discussed 

below) 

  CFUEL*, j ,US ,Y  = the cost of fuel for technology j in the U.S. in year Y ($/million-BTU 
[HHV]) (Table S13; discussed below) 

  eff j ,US ,Y  = the efficiency of fuel-use for technology j in the U.S. in year Y (kWh/million-
BTU [HHV]) (Table S13; discussed below) 

subscript j = technology types (Table S13) (note that the EIA’s AEO reference 
projections, used in our BAU scenario, include only fixed-tilt PV, of unspecified 
technology [EIA, 2014a]; therefore, for utility PV in our BAU we use the average 
of thin-film and crystalline fixed-tilt) 

subscript W = 100% WWS or BAU scenario 
HHV = higher heating value 
 
The use of the rated or “nameplate” peak power. The peak rated or “name-plate” 
power,  kWP−NM , is part of the capital-cost parameter and part of the capacity-factor 
parameter, so it is important, of course, that estimates of the capital cost and the 
capacity factor are in fact based on the same definition of  kWP−NM .  This definitional 
consistency mainly is an issue for photovoltaics (PVs) and wind turbines, because the 
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peak power of these depends on the intensity of solar radiation or the wind speed. PV 
manufacturers rate panels under “Standard Test Conditions” (STC; irradiance of 1,000 
W m-2, solar spectrum of AM 1.5 and module temperature at 25 °C.) 
(http://en.wikipedia.org/wiki/Solar_panel), and generally analyses of the cost and 
performance of PVs use this standard convention (e.g., 
http://rredc.nrel.gov/solar/calculators/pvwatts/version1/change.html; U.S. DOE, 
2012). It appears that wind turbines generally are rated at a wind speed of 11 m/s 
(http://distributedwind.org/wp-content/uploads/2012/08/Certified_Ratings.pdf), 
but that this standard is not as universally accepted as the STCs are for PVs. It therefore 
is possible that in the case of wind power cost figures from one source are not consistent 
with capacity figures from another source.  
 
Derivation of the formula for a continuous annuity, for levelizing (annualizing) costs 
 
A “levelized” cost per unit, such as the $/kWh levelized cost of electricity, is equal to 
annualized initial costs plus periodic annual costs (such as fuel and operating and 
maintenance) divided by annual output. Typically, annualized initial costs are 
calculated using the formula for an annuity “paid” in a lump sum at the end of a 
discrete time interval, 
 

  
CAI =

r ⋅CI

1− 1+ r( )−t  

 
where r is the annual interest rate, t is the life of the technology in years, and annuity 
payments are made at a discrete point in time, the end of the year. This method is 
exactly correct for calculating a payment that actually is made at discrete intervals, but 
it is not technically correct for annualizing (or “levelizing”) energy-service costs, 
because the purpose of the annualization is to produce a cost stream with a time-flow 
characteristic that matches the time flow of the energy output (e.g., in the levelized 
$/kWh cost calculation, the output is the continuous flow of kWh). Because energy 
production and use actually is continuous, the annualization of the initial cost of energy 
generators also should be based on a continuous time stream of “payments” rather than 
discrete-interval payments.  
 
To derive a continuous annuity formula from the standard discrete-interval formula, we 
first introduce a variable n that represents the number of payments per year, with the 
ultimate aim of solving for  CAI  when n approaches infinity (and hence the time interval 
approaches zero), 
 

  

CAI(n) =

r
n
⋅CI

1− 1+ r
n

⎛
⎝⎜

⎞
⎠⎟
−n⋅t  

 
Here r remains the annual discount rate, and t still is denominated in years, but n is 
denominated in 1/years. If for example n =12 (months)/year, then r/n is effectively the 
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monthly interest rate (%/year x years/month), t x n is the lifetime in months 
(months/year x years), and   CAI(n) is the “payment” made every 1/nth of a year; i.e., in 
every month for this example.  
 
If we multiply both sides by n, then we have 
 
 

  

CAI(n) ⋅n =
r ⋅CI

1− 1+ r
n

⎛
⎝⎜

⎞
⎠⎟
−n⋅t  

 
 
where the quantity   CAI(n) ⋅n  is the total amount paid over the year (the 1/nth-year 
payment multiplied by n payments per year). Note that   CAI(n) ⋅n is not the same as  CAI ; 
the latter is the single year-end payment made every year, whereas the former is the 
sum, over a year, of the n payments made every 1/nth of a year.  No matter what the 
value of n, the quantity   CAI(n) ⋅n always equals the total payments over a year. And as n 
approaches infinity,   CAI(n) ⋅n becomes the total over a year of a continuous payment rate, 
which is just what we want, because it corresponds with the total over a year of the 
continuous annual energy (electricity) generation rate. We will designate this 
continuous payment rate   CAI* , to distinguish it from the discrete lump-sum end-of-year 
payment  CAI . 
 
Finally, we want to find  
 

  
lim
n→∞

1+ r
n

⎛
⎝⎜

⎞
⎠⎟
−n⋅t

 

 
Let us define  n ≡ m ⋅r . Thus we have  
 

  
lim
n→∞

1+ r
n

⎛
⎝⎜

⎞
⎠⎟
−n⋅t

≡ lim
m→∞

1+ r
m ⋅r

⎛
⎝⎜

⎞
⎠⎟
−m⋅r⋅t

= lim
m→∞

1+ 1
m

⎛
⎝⎜

⎞
⎠⎟
−m⋅r⋅t

= lim
m→∞

1+ 1
m

⎛
⎝⎜

⎞
⎠⎟

m⎛

⎝
⎜

⎞

⎠
⎟

−r⋅t

 

  
The quantity in the outer parentheses is defined to be the constant e. Thus we have  
 

  
lim
n→∞

1+ r
n

⎛
⎝⎜

⎞
⎠⎟
−n⋅t

= e−r⋅t  

 
and  

  
CAI* =

r ⋅CI

1− e−r⋅t  
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where r remains the annual discount rate and t is the lifetime in years. 
 
We apply this continuous annuity formula to the annualization of all initial costs, to the 
annualization of the present worth of capacity-factor-years, and to the annualization of 
the present worth of the operations and maintenance cost stream.  
 
The cost of WWS technologies in the BAU in year Y 
 
For three reasons, the cost of WWS technologies in year Y in the BAU differs from the 
cost of WWS in year Y in the 100% WWS scenario:  
 
1) The transmission and distribution (T&D) system in the 100% WWS scenario is 
different from the system in the BAU. The cost of the T&D  system in the BAU is based 
on the EIA’s AEO cost projections; the cost of T&D in the 100% WWS scenario starts 
with the EIA’s AEO cost projections and then incorporates the costs of modifications to 
the T&D system due to more decentralized generation and additional supply-and-
demand balancing measures in the 100% WWS scenario. See the discussion of T&D 
system costs below. 
 
2) The installed capacity of WWS is much less in the BAU than in the 100% WWS 
scenario, and as a result the initial cost of WWS technology, which on account of 
learning and economy-of-scale effects is a function of installed capacity, is higher in the 
BAU than in the 100% WWS scenario. We assume that the initial cost of WWS in the 
BAU declines over time (from year Y* to year Y) by only a (small) fraction of the decline 
in the 100% WWS scenario. We estimate this fraction as a nonlinear function of the 
difference between Y* and Y. See the discussion of the parameter   Cwws ,Y ,BAU . 
 
3)  Capacity factors for WWS technologies in the BAU are different from the capacity 
factor in the 100% WWS scenario, on account of differences in the installed capacity 
(which can entail differences in the average quality of the wind or solar resources used) 
and differences in system operation in order to ensure reliably matching of supply and 
demand. Capacity factors in the BAU are estimated based on the EIA’s AEO projections; 
capacity factors in the 100% WWS scenario start with actual current-year factors and 
then account for assumed changes over time in resource quality, technological 
performance, and system operation. See the discussion of the capacity factor in the 
subsections below. 
 
To ensure consistency between our estimates of WWS technology costs in the BAU 
and the 100% WWS scenario, we estimate BAU costs relative to 100% WWS costs 
where appropriate. Formally,  
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Cwws ,Y ,BAU = CAI ,wws ,Y ,BAU +CVOM ,wws ,Y +CFOM ,wws ,Y ,BAU +CTD ,Y ,BAU

CFOM ,wws ,Y ,BAU = CFOM ,wws ,Y ,100%WWS ⋅
CFwws ,Y ,100%WWS

CFwws ,Y ,BAU

CAI ,wws ,Y ,BAU =
CAI ,wws ,Y* ⋅CFwws ,Y* − K1 ⋅ CAI ,wws ,Y* ⋅CFwws ,Y* −CAI ,wws ,Y ,100%WWS ⋅CFwws ,Y ,100%WWS( )

CFwws ,Y ,BAU

K1 = 1− Y −Y *
100

⎛
⎝⎜

⎞
⎠⎟

K2

 

 
where  
 

  Cwws ,Y ,BAU  = the levelized cost of WWS technologies in year Y in the BAU ($/kWh)  

  CAI ,wws ,Y ,BAU  = the annualized initial cost of WWS technologies in the BAU in year Y 
($/kWh)  

  CVOM ,wws ,Y  = the variable O&M costs of WWS technologies in year Y ($/kWh) (assumed 
to be the same for the BAU and the 100% WWS scenario)  

  CFOM ,wws ,Y ,BAU  = the fixed O&M costs of WWS technologies in year Y in the BAU ($/kWh)  

  CTD ,Y ,BAU  = the cost of the transmission and distribution system in year Y in the BAU 
($/kWh) (based on the EIA’s AEO; see discussion below) 

  CFOM ,wws ,Y ,100%WWS  = the fixed O&M costs of WWS technologies in the 100% WWS scenario 
in year Y ($/kWh) (see discussion of O&M costs in regards to Table S13) 

  CFwws ,Y ,100%WWS  = the capacity factor for WWS technologies in year Y in the 100% WWS 
scenario (see discussion below) 

  CFwws ,Y ,BAU  = the capacity factor for WWS technologies in year Y in the BAU (see 
discussion below) 

  CAI ,wws ,Y*  = the annualized initial (AI) cost of WWS technologies in the base year Y* 
($/kWh)  

  CAI ,wws ,Y ,100%WWS  = the annualized initial cost of WWS technologies in the target year Y in 
the 100% WWS scenario ($/kWh)  

  K1 = the decline in the annualized initial cost of WWS (in the BAU) as a fraction of the 
difference between the base-year Y* and the target-year Y* cost in the 100%WWS 
scenario 

  K2 = exponent determining the rate of decline in the annualized initial cost of WWS 
technologies as a function of time (higher values result in smaller fractions) (see 
discussion below). Its values are as follows: 
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Geothermal Hydropower Wind Solar thermal Utility PV Rooftop PV 

0.00 0.00 2.50 0.50 3.50 3.00 
Table S13 shows intermediate calculated values and results. 
 
Annual discount rate 
 
The U.S. Office of Management and Budget (OMB) (2003) recommends that cost-benefit 
analysis of public investments and regulatory impacts use two discount rates: one that 
reflects the opportunity cost of capital in the private sector, and one that reflects the 
time value of private consumption. In 2003, the OMB (2003) estimated that the former 
was 7% (based on the real before-tax rate of return on private investment) and that the 
latter was 3% (based on the real rate of return on long-term government debt, such as 
10-year treasury notes). However, from 2003 to 2013 the real rate of return on 10-year 
treasury notes has averaged only 1.4% 
(http://www.federalreserve.gov/releases/h15/data.htm;  “Market yield on U.S. 
Treasury securities at 10-year constant maturity, quoted on investment basis, inflation-
indexed”). In line with this, the OMB (2013) now recommends using a real discount rate 
of 1.9% for cost-effectiveness analysis (which the OMB treats differently from cost-
benefit and regulatory-impact analysis). Moreover, the OMB (2003) adds that “if your 
rule will have important intergenerational benefits or costs you might consider a further 
sensitivity analysis using a lower but positive discount rate,” and suggests a range of 1-
3%.  
 
Other analyses, more comprehensive than the OMB's, indicate that for two reasons, the 
OMB's upper-range value of 7% is too high. First, the real pre-tax rate of return on 
private investment likely is less than 7% -- Moore et al. (2004) estimate that it is about 
4.5%. Second, the pre-tax rate of return to private investment is the appropriate 
discount rate only for relatively short-term public projects that dollar-for-dollar crowd 
out private investment; for projects that  have a longer time horizon or that affect 
consumption as well private investment, a lower discount rate is appropriate (Moore et 
al., 2004; National Center for Environmental Economics, 2014). Moore et al. (2004) 
review the accepted methods for estimating the social discount rate (SDR), and 
conclude that "no matter which method one chooses, the estimates for the SDR vary 
between 1.5 and 4.5 percent for intragenerational projects, and between 0 and 3.5 
percent for projects with intergenerational impacts" (p. 809). The National Center for 
Environmental Economics (2014) has a similar discussion and indicates (without 
explicitly recommending) that a reasonable range is 2% to 5%.  
 
With these considerations, we use a rate of 1.5% in our “low” cost (LCHB) scenarios and 
a rate of 4.5% in our “high” cost (HCLB)  scenarios.  
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Year of prices 
 
We use GDP implicit price deflators to convert all costs except electricity-power-plant 
capital costs from the price-year basis in the original source to our designated price-
year basis (2013). (The designated price-year basis can be any user-specified year up 
to the year for which the most current GDP implicit price deflator is available.) 
 
For electricity-plant capital costs, we follow the EIA (2014a, 2014c) and develop an 
adjustment that accounts for trends in prices relevant specifically to the construction of 
power plants relative to trends in the general price level embodied in the GDP implicit 
price deflator. The EIA (2014a) applies “a cost adjustment factor, based on the producer 
price index for metals and metal products, [which] allows the overnight costs to fall in 
the future if this index drops, or rise further if it increases” (p. 96).  More precisely, the 
EIA projects the metals and metal- product producer price index (MMP-PPI) – a proxy 
for electricity-plant prices –  relative to its projection of GDP chain-type price indices 
(GDP-CTPI), for each year of its projection, and then multiplies power-plant capital 
costs by the relative adjustment factor for each projection year.  

We start with the EIA’s projection of the GDP-CTPI and the MMP-PPI from 2012 to 2040. 
We use historical data to fill in the series back to 1990 (to enable the use of a designated 
price year as early as 1990), and extend the series to 2075 using a ten-year moving linear 
extrapolation. To get from the starting estimate of capital costs in the original price year 
of the source material to capital costs in the designated price year of our analysis, we 
multiply the original estimate by the appropriate MMP-PPI ratio, which converts the 
capital-cost estimate to what it would be were it estimated in designated-year prices 
specifically for capital costs. To capture the effect of changes over time in real power-
plant capital costs relative to changes in general prices, we then multiply by the ratio of 
the MMP-PPI to the GDP-CTPI for the target year vs. the designated price year.  

Formally,  

  

CCEl ,Y ',Y = CCEl ,Y0
⋅ADJEl ,p

ADJEl ,p =
pMMP−PPI ,Y '

pMMP−PPI ,Y0

⋅

pMMP−PPI ,Y

pMMP−PPI ,Y '

pGDP−CTPI ,Y

pGDP−CTPI ,Y '

 

where  
 

 CCEl = the capital cost of electricity power plants ($/kW) 

  ADJEl ,p = the adjustment factor for changes in the price of electric power plants  
p = price index 
 
Subscripts:  
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MMP-PPI = metals and metal products producer price index 
GDP-CTPI = gross domestic product chain-type price index 
Y = target year of the analysis (for impacts or technology status) 
Y’ = the designated price-year of the analysis 
YO = the price year of the original cost estimates in the source documents (2012 for 

power-plant cost data used here) 
 
Because the EIA projects that the MMP-PPI will rise more slowly than the GDP-CTPI, 
the adjustment factor   ADJEl ,p  is less than 1.0. Because WWS technologies are more 
capital intensive than conventional technologies, this has the effect of slightly 
reducing the levelized cost of electricity from WWS technologies relative to the 
levelized cost of conventional technologies.  
 
Interest charges during construction 
 
We assume that 1/2  to 2/3  of the total capital is required at the start of construction, 
and the remainder is required 1/2 or 2/3 of the way through the construction period. In 
comparison, Lazard (Jalan, 2014) estimates interest charges on construction capital 
assuming effectively that 1/2 of the capital is required at the beginning of construction 
and 1/2 is required at the end of construction. Lazard also ignores interest costs on 
projects less than 24 months.  
 
Overnight capital cost (national average) (year-2012 dollars): technology base year 
2013 (new capacity) ($/kW) 
 
These are complete system installed costs including engineering, other owner costs, and 
connection to the transmission system, but excluding borrowing costs during the 
construction period (which we treat separately). We estimate capital cost, lifetime, 
efficiency,  capacity factors, and O&M costs to be mutually consistent. Our estimates are 
based on a review of the literature (Table S14) with extra weight given in some cases to 
the data from Lazard (2014), because those data are the most up-to-date and 
transparent. For hydropower we give more weight to EIA's estimates from our 
literature review. We assume that nuclear power costs are 10% to 35%  higher than 
reported in the literature because nuclear power plants have tended to have particularly 
high cost over-runs (as much as 100%; Sovacool et al., 2014a, b, c), and as Hultman et al. 
(2007, p. 2088) note, for nuclear power "past experience suggests that high-cost surprises 
should be included in the planning process." (The discussion in Sovacool et al. supports 
the notion that even though recent estimates of the capital cost of nuclear power are 
higher than past estimates, the recent increases do not account for the factors that lead 
to cost overruns in the past.)  We assume that coal-plant costs are 5% to 10% higher than 
reported in the studies consulted here because thermal plants also tend to have cost 
overruns (about 10%; Sovacool et al., 2014b). For PV systems the capital cost here 
includes the inverter; however, In the intermediate calculated results the total capital 
cost is broken into an inverter component and an all other components, and the 
annualized cost for each of these is estimated. Solar thermal costs are based on Lazard's 
(2014) estimates with 18-hour storage. 
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As mentioned above, here we estimate national-average costs. In the next main section 
we estimate state or region-specific cost adjustments.  
 
Note: see the discussion in the section “Year of prices”.  
 
Overnight capital cost (year-2012 dollars): long-run limit cost w.r.t. base cost 
 
Our estimates of long-run costs relative to current costs are based on a review of the 
literature (Table S14 and other sources). We focus in particular on the long-run costs of 
wind and solar, because these are more uncertain.  
 
PVs: Barbose et al. (2014a) show that PV capital costs in the US have declined rapidly in 
the last several years, and are expected to continue to decline. In the US there appears to 
be considerable opportunity to reduce system costs not related to the cost of the 
modules, as evidenced by the much lower system costs today in other developed 
countries (e.g., in Germany in 2014 residential systems cost $2100/kW and commercial 
systems cost $1900/kW, excluding taxes -- much lower than in the US). (See also 
Goodrich et al., 2012, 2013.)  
 
For the residential and commercial PV markets, installed prices depend on the type of 
inverter (standard vs. micro-inverter) and the efficiency of the module (higher efficiency 
modules cost more) (Barbose et al., 2014), but we do not consider these differences here.  
 
Wind: Capital costs have declined in recent years in part because of economies of scale 
from building larger projects and higher-capacity turbines (Barbose et al., 2014b). 
 
Note: see the discussion in the section “Year of prices”.  
 
Overnight capital cost (year-2012 dollars): decline rate towards limit  
 
This is the continuous annual rate of approach to the long-run lower-limit cost from the 
base cost. We assume this is higher (i.e., that there are faster cost reductions) for 
technologies such as PVs for which there is significant potential for continued learning 
and relatively rapid cost reduction. In general we assume slower rates of decline in 
costs for conventional technologies than does the EIA (2014b) in its projections of the 
change in the levelized capital cost of generation technologies from 2019 to 2040. 
 
Capital expenditure to extend life (% of overnight capital) 
 
We assume that after at least 40 years of operating life, large coal, gas, and nuclear 
power plants either are allowed to age and retire or are refurbished for significant life 
extension (see e.g. EIA, 2010, 2014c; ICF Incorporated, 2013). We assume that operators 
will extend life only when it is economically advantageous, which we assume pertains 
to our low-cost (LCHB) (longest-potential-life) but not our high-cost (HCLB) case. 
Estimates of the expenditure for coal and nuclear are based on our judgment. Byrne 
(2013) indicates that capital costs to extend the life of wind turbines are a very small 
fraction of overnight capital costs.  
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Note that in principle we should have in internally consistent estimation of facility life, 
capital expenditure to extend life, initial capital cost, capacity factor, and O&M 
expenditure. Here we assume that if there is no capital expenditure to extend life, then 
O&M costs increase in the later years of the life of the facility.  
 
Here we use ICF Incorporated (2013) estimates of the life extension cost as a percentage 
of new unit cost,  
 
Coal steam 7.0% 
Combined cycle 9.3% 
Combustion turbine and internal-combustion engine 4.2% 
Oil/gas steam 3.4% 
IGCC 7.4% 
Nuclear 9.0% 
 
Timing of capital expenditure (% of facility life) 
 
For most technologies, we assume that in the low-cost (LCHB), long-life case, the life-
extension expenditure is made after about 65% of the ultimate extended life. For wind, 
we assume the expenditure is made after 60% of the ultimate extended life (Byrne, 
2013).  In the high-cost (HCLB), short-life case there is no life-extension expenditure, but 
the timing variable is relevant nevertheless because as discussed elsewhere it 
determines a break point between two rates of changes in O&M expenditures. We 
assume that this break point occurs at 70% of the life time in the HCLB case. The timing 
here is defined to be the time when the funds for the life-extension work are secured, 
which will be months and in some cases year before the life-extension work is 
completed. 
 
Decommission/salvage cost (% of overnight capital) 
 
This is the complete cost of decommissioning (scrapping) a power plant, as a fraction of 
its initial cost. Ideally the cost here is the total cost to return the site to the original 
condition, after any salvage value of material sold or left in place. Our estimates for 
nuclear and coal plants are based on site-specific cost estimates and other sources 
(Nuclear Regulatory Commission, 2013; Electric Power Research Institute, 2004; Nuclear 
Energy Agency, 2003). Our estimates for nuclear are consistent with World Nuclear 
Association's (2014) remark that decommissioning costs are 9-15% of initial capital cost. 
Our estimates of nuclear power-plant decommissioning cost are meant to include long-
term waste disposal, but it is not clear if the estimates in the literature include this fully. 
For nuclear SMR, we scale decommissioning factor for APWRs by the APWR/SMR 
capital cost ratio. Our estimates for on-shore wind are based on Byrne (2013). Our 
estimates for solar are based on our consideration of the plant complexity, mass of 
materials, toxicity and hazardousness, recyclability, and salvageability. Note that in 
some cases the percentages are higher in the "low-cost" (LCHB) case because 
decommissioning costs tend to be constant rather than an actual percentage of the initial 
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cost, which means that if the initial cost is lower the decommissioning cost as a 
percentage is  higher.  
 
Build time (years) 
 
Our estimates are based on a review of the literature (Table S14). For nuclear APWR we 
use estimates at the  high end of the reported ranges because the construction time for 
nuclear power plants typically is substantially underestimated (Sovacool et al., 2014a). 
For nuclear SMR we assume significantly less time than for APWRs. We assume that 
future hydropower projects will be modest in size and hence not take up to a decade to 
build. We assume that CSP without storage takes 5% less time to build than does CSP 
with storage. 
 
Facility life (years) 
 
The facility life is the period of operation before the facility either is decommissioned or 
is so extensively rebuilt that it effectively is new construction. (Note that the facility life 
is not necessarily the same as the “cost recovery” period used in some financial 
analyses.) Our estimates are based partly on a review of the literature (Table S14) and 
partly on data on actual retirement ages, discussed below (Table S8).  
 
Assumptions about the facility life must be consistent with assumptions regarding 
initial capital cost, capital expenditure to increase life, the capacity factor, and O&M 
expenditures. For example, the long lifetimes typically assumed for nuclear power 
presume major additional capital expenditures in mid-life, which we do account for 
here.  
Similarly, Peltier (2011) analyzed a similar database of U.S. power plants and found that 
the capacity factor and energy efficiency of coal-fired plants decrease with the age of the 
units. He suggests that old, inefficient, infrequently used plants that are costly to 
upgrade are the most likely to be retired in the coming years. The EIA’s National 
Energy Modeling System (NEMS), used to produce it’s Annual Energy Outlook, has an 
“Electricity Capacity Planning” Submodule that will retire older fossil-fuel plants if the 
costs of continuing to run them (including expected capital/upgrade expenditures) is 
greater than the cost of building new capacity (EIA, 2014e).  
 
The EIA’s Form 860 collects generator-specific data on capacity, power plant equipment, 
fuels used, date of operation, and planned and actual retirement dates 
(http://www.eia.gov/electricity/data/eia860/). Based on these data, an online “Today 
in Energy” brief from the EIA 
(http://www.eia.gov/todayinenergy/detail.cfm?id=15031) reports the following for 
retired coal-fired generating units: 
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 2010 2011 2012  
total net summer capacity (MW) 1,418 2,456 10,214  
number of units 29 31 85  
average net summer capacity (MW) 49 79 123  
average age at retirement 58 63 51  
average tested heat rate (Btu/kWh) 11,094 10,638 10,353  
capacity factor 36% 33% 35%  
 
An earlier brief (http://www.eia.gov/todayinenergy/detail.cfm?id=7290) shows that 
units planned for retirement from 2012 to 2015 have an average age of about 56 years.  
 
For this project we used the complete EIA-Form 860 database to calculate the capacity-
weighted average actual or planned retirement age for plants using different fuels 
(Table S8).  
 
 
 
Table S8. Summer-capacity-weighted average of retirement for generators using 
different energy sources (years) 
 
 Plants retired 2001 to 2013 Planned for retirement 2014- 

Fuel or plant type All sectors Electric 
Utility 

IPP Non-
CHP All sectors Electric 

Utility 
IPP Non-

CHP 
Nuclear  32.5 31.3 38.9 46.0 NA 46.0 
Bituminous coal 51.5 52.9 49.7 53.2 53.8 53.6 

Subbituminous coal 48.7 45.9 51.9 50.4 49.0 54.3 
Lignite 52.8 NA 52.8 NA NA NA 

Anthracite NA NA NA NA NA NA 
Natural gas 41.8 48.7 39.2 49.7 53.8 46.3 

Gas turbine 32.8 37.5 32.4 43.3 42.8 43.7 
Distillate fuel oil 40.5 41.1 40.4 44.3 44.1 44.7 

Residual fuel oil 46.9 44.2 51.6 47.2 59.6 42.0 
Hydropower 62.4 57.5 79.7 53.2 53.4 30.2 

Geothermal 17.3 NA 16.6 NA NA NA 
 
Source: Data from EIA Form-860 (http://www.eia.gov/electricity/data/eia860/). 
IPP-Non-CHP = independent power producer, non-combined heat and power. 
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Our assumptions for the main BAU technologies (Table S13) are based in part on the 
results shown in Table S8. For nuclear SMR, we assume a slightly shorter life time than 
for APWRs. Our estimates for wind farms assume that longer-life wind farms have 
higher O&M costs and reduced availability (i.e., a lower capacity factor) (Byrne, 2013).  
 
Capacity factors (national average): overview 
 
The capacity factor is equal to [actual ac-electricity output to the grid over a year] 
divided by [potential energy output at maximum rated (“nameplate”) power for all 
8760 hours in a year].  
 
Actual output is less than maximum potential continuous output because of planned 
and un-planned outages and downtime, degradation of mechanical performance due to 
wear and tear, intentional idling or curtailing to meet system loads, and, in the case of 
solar or wind power, fluctuations in the primary energy inputs (wind speed and solar 
insolation) that result in the annual average input being less than the maximum 
potential.  
 
Our objective here is to estimate the discounted lifetime average capacity factor for each 
technology, for the near-term base year and the BAU scenario and the 100% WWS 
scenario for the long-term target year. For most in-use technologies in the near-term 
base year, and for most technologies in the BAU scenario in the long-term target year, 
we start with the EIA’s (2014c, 2014f) AEO projections of fleet-average capacity factors. 
To estimate capacity factors in the 100% WWS scenario for the long-term target year, we 
start with estimates for the near-term base year, and then project future changes in four 
parameters that affect the capacity factor,  
 
• degradation,  
• resource availability (e.g., average wind speed or solar intensity),  
• technological performance, and 
• system operation to ensure balancing of supply and demand.  
 
Note that the EIA estimates we start with are of the capacity factor of an in-use fleet, 
whereas we ultimately wish to estimate the discounted lifetime capacity factor for each 
technology. The two are not the same because the average age of the fleet is not 
necessarily the same as the effective average age of an individual technology over its 
life. Our method, therefore, is first to back out from the EIA’s fleet-average estimates 
what we assume are the effects of age-related degradation, to get the capacity factor for 
a brand-new fleet of a particular technology, and then to account for the effects of 
degradation over the entire life of the plant, with discounting (as discussed next), to 
arrive at our objective, the discounted lifetime average capacity factor.  
 
As just mentioned, we estimate a discounted lifetime average capacity factor, in order to 
account for the effect, on the present worth of lifetime electricity generation, of changes 
in the capacity factor over time. For all technologies except wind we assume that the 
capacity factor changes over time due only to performance degradation; i.e., we assume 
that plant availability, already included in our estimates of the year-zero capacity factor, 
is constant over time, except in the case of wind power. For wind, we correct for the 
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difference between the present worth of the actual availability schedule (Byrne, 2013) 
and a constant availability schedule. 
 
Capacity factor: fleet average capacity factors  
 
The EIA’s (2014c, 2014f) AEO projects national fleet-average capacity factors for all of 
the major generation technologies considered here. As mentioned above and shown 
below (Table S9), we use the EIA’s estimates for our near-term, base-year case and for 
our target-year BAU scenario. In most cases, the EIA’s AEO capacity factors are the 
same as, or very close to, the capacity factors we estimate for the year 2014 based on 
data reported for the first several months of 2014 (EIA, 2014d).  
 
The EIA’s AEO projects through the year 2040. We extend the projection to the year 
2075 using a 10-year moving linear extrapolation, but with the resultant trend slope 
dampened by the 0.35 power . This prevents the capacity factor beyond 2040 from 
deviating much from the year-2040 value.  
 
For any technologies not included in the EIA’s AEO, our estimates are based on a 
review of the literature (Table S14). Capacity factors for solar vary greatly by solar or 
wind resource class; we have assumed national-average values typical for the year 2014.  
 
Capacity factor: fleet average age (% of life) 
 
This is the average age of the fleet to which the technology base year fleet-average 
capacity factor applies. We use this to back-out the effects of aging embedded in the 
fleet-average capacity factors, in order to obtain the capacity factors for new systems.  
 
Capacity factor: annual degradation of capacity factor (base-year tech.) (+) 
 
The degradation factor is mean to capture the effects of gradual, low-level, irreversible 
wear and tear as a system ages, resulting in, for example, increased mechanical friction, 
increased electrical resistance, and reduced combustion efficiency. This degradation 
factor does not incorporate loss of output due to planned or un-planned downtime for 
repairs and maintenance or the impacts of weather or other external conditions on 
output, effects that we include in the technology base-year capacity factors. The 
discounted lifetime degradation factor is calculated by taking the present worth of the 
actual series of degraded life-years and annualizing that into equal payments. The 
formula for a continuous annuity is discussed above. The present worth of degraded 
life-years is calculated as  
 

  
DGPW = − e− d+r( )⋅L −1

d + r

 

 
where  
  

 DGPW  = the present worth of degraded life-years (years) 
d = the annual rate of degradation of the capacity factor (discussed below) 
r = the annual discount rate 
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L = the lifetime of the facility (years) 
 
Staffell and Green (2014) cite studies that estimate or assume that conventional fossil-
fuel technologies degrade at 0.2% to 0.7% per year.  For wind assume that degradation 
is a minor component of the combined availabilty+degradation+turbine-death factor of 
1.6%/year estimated by Staffell and Green (2014). Our assumptions for PV are based on 
the analysis in Jacobson et al. (2014) and Bolinger and Weaver's (2014) suggestion that 
0.50%/year is a "standard" assumption.  
 
Capacity factor: annual change in degradation rate (-) 
 
We assume that over time the degradation factor decreases, at 0.1% per year for 
relatively  mature technologies (all conventional generation) and 0.5% for year for 
relatively new technologies (e.g., wind and solar).  
 
Capacity factor: resource availability long-run limit w.r.t. base (100% WWS 
scenario only) (<100%) 
 
Resource availability refers to available energy from wind, solar, and water resources, 
with respect to the availability in the base year. Although one might expect that in 
general, at a national level, wind and solar would be developed in the best sites first, 
with the result that over time progressively worse sites would be developed leading to 
lower national-average capacity factors, this is not necessarily the case, because other 
forces are at work. Indeed, it appears that most high-wind and high-solar sites have yet 
to be developed. Bolinger and Weaver (2014) report that "the quality of the solar 
resource in which PV projects are being built in the United States has increased on 
average over time" (p. i), and Barbose et al. (2014b) state that "the United States still has 
an abundance of undeveloped high-quality wind resource areas" (p. 42).  
 
These considerations suggest that effect on capacity factors of variation in solar 
intensity and wind speed over time is not well captured by a single national-average 
adjustment. Therefore, we account for the effect of variations in solar and wind resource 
availability at the state level (see discussion in a later subsection).  
 
We do however assume that nationally most good hydropower sites already have been 
developed.  
 
In the case of wind power, another factor affects the amount of energy available from 
wind resources in a target year with respect to the amount available in the base year. As 
the number of wind farms increases, the extraction of kinetic energy from the wind by 
the turbines decreases the average wind speeds, which in turn reduces the potential 
power output from the wind farms (Jacobson and Archer, 2012). We account for this at 
the state level (see discussion in a later subsection).  
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Table S9. Source of fleet-average capacity-factor estimates 
 
Technology Source of estimate of capacity factor  
Advanced pulverized coal EIA (2014f) Coal 
Advanced pulverized coal w/CC Assume same as “Advanced pulverized coal” 
IGCC coal EIA (2014f) IGCC without sequestration 
IGCC coal w/CC EIA (2014f) IGCC with sequestration 
Gas combustion turbine EIA (2014f) Combustion turbine/diesel 
Combined cycle advanced EIA (2014f) Combined cycle advanced without sequestration 
Combined cycle conventional EIA (2014f) Combined cycle conventional 
Combined cycle advanced w/CC EIA (2014f) Combined cycle advanced with sequestration 
Diesel generator (for steam 
turbine) 

EIA (2014f) Oil and natural gas steam 

Nuclear, APWR EIA (2014f) Nuclear power 
Nuclear, SMR Assume same “Nuclear APWR” 
Fuel cell EIA (2014f) Fuel Cells 
Microturbine Table S14 
Distributed generation  EIA (2014c, 2014f) Distributed generation 
Municipal solid waste EIA (2014c) Municipal waste (electric power sector) 

Biomass direct 

EIA (2014c) Wood & other biomass (electric power sector) (because 
the EIA’s projections of capacity for the “wood and other biomass” 
category do not include plants that co-fire biomass and coal, we do 
not include generation from co-firing plants; i.e., we include 
generation from “dedicated plants” only) 

Geothermal EIA (2014c) Geothermal (electric power sector) 

Hydropower 

EIA (2014c) Conventional hydropower (electric power sector; we 
ignore hydro power in the “end-use” sector because it accounts for 
less than 1% of  hydro generation) 

On-shore wind EIA (2014c) Wind 
Off-shore wind Table S14 
CSP no storage EIA (2014c) Solar thermal (electric power sector) 
CSP w/ storage Table S14 
PV utility crystalline tracking Table S14; literature review 
PV utility crystalline fixed EIA (2014c) Solar photovoltaic (electric power sector) 
PV utility thin-film tracking Table S14; literature review 
PV utility thin-film fixed EIA (2014c) Solar photovoltaic (electric power sector) 
PV commercial rooftop EIA (2014c) Solar photovoltaic (end-use sector) 
PV residential rooftop EIA (2014c) Solar photovoltaic (end-use sector) 
Wave power Table S14 
Tidal power Table S14 
Solar thermal (water or glycol 
solution) 

Table S14 
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Capacity factor: resource availability change rate (-) 
 
See the discussion regarding the resource availability, above. We assume that the 
modest long-run lower limits of WWS resource availability are approached relatively 
modestly (Table S13).  
 
Capacity factor: technology performance, long-run limit w.r.t. base (100% WWS 
scenario only) (>100%) 
 
Technological performance refers to technological changes to WWS technologies that 
affect the capacity factor, holding resource availability and all other factors constant.  
Black and Veatch (2012) project that the capacity factor for class 3 onshore-wind 
resources increases from 32% in 2010 to 35% in 2050. Barbose et al. (2014b) report that 
rotor diameter, hub height, and swept area of wind turbines increased from 1999 to 
2013. Bolinger and Weaver (2014) show that in recent years utility-scale PV projects 
have increased the "inverter loading ratio" (the ratio of array capacity to inverter 
capacity), with a resultant increase in capacity factor, although it does not seem that this 
trend can continue indefinitely. Our estimates (Table S13) are based on our judgment 
that the potential to increase the capacity factor for on-shore wind is greater than the 
potential to increase it for PVs.  
 
Capacity factor: technology performance change rate (+) 
 
See discussion of technological performance.  
 
Capacity factor: multiplier to account for changes in system operation in the long-
run (100% WWS scenario only) (<>100%) 
 
This is a multiplier on the capacity factor that accounts for changes in the capacity factor 
in the long run in the 100% WWS scenario, with respect to the factor in the base year, 
due to changes in the operation of the entire electricity system for the purpose of 
matching supply with demand, holding constant the other determinants of the capacity 
factor (changes in degradation, resource availability, and  technology). For example, one 
way to address the mismatch between the pattern of demand and the pattern of wind 
and solar power availability is to increase the installed capacity of wind and solar to 
minimize the greatest difference between demand and available wind and solar power. 
However, this increase in capacity will result in times in which the available wind and 
solar power exceeds demand. If it is not possible to shift demand or store the immediate 
“excess” generation, then the excess generation will be unused (“spilled”), which 
reduces the capacity factor. 
 
Ideally the use of over-capacity, long-distance transmission, decentralized storage, and 
other means of matching supply and demand would be estimated jointly as part of an 
overall, comprehensive analysis of the least-cost methods of balancing supply and 
demand. Although we have not done such a comprehensive least–cost optimization 
analysis here, and have not formally modeled how selectively building over-capacity 
can help balance WWS supply with demand, we have estimated the cost of 
decentralized storage in a system that formally balances supply and demand (Jacobson 
et al., 2015). In the section “Transmission, distribution, storage, gap filling : other long-
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term (2050) storage and related costs (100% WWS scenario only),” we estimate the 
amount of over-capacity (represented by a decrease in the capacity-factor multiplier) 
that increases the system-wide average delivered cost of electricity by the same amount 
as does the use of decentralized storage. In this section we briefly discussion 
considerations that affect the application of the capacity factor multiplier and the 
interpretation of the levels of over-capacity and excess generation that give the same 
cost increase as does decentralized storage.  
 
Wind and solar power. For wind and solar systems, the capacity-factor multiplier 
represents the extent to which a system is built and operated to have "excess" or reserve 
renewable generation capacity, resulting in excess, unused ("spilled" or "curtailed") 
generation. Recent studies of the least-cost configuration of 100% renewable energy 
systems indicate that systems taking advantage of a relatively limited array of 
techniques to match supply and demand will spill 10% to 30% of total generation 
(Solomon et al., 2014; Rodriguez et al., 2014; Elliston et al., 2013).  However, no study to 
date takes advantage of the full array of optimization techniques; for example, none 
consider aggressive demand management and decentralized storage. We therefore 
conclude that optimized systems taking advantage of the full array of balancing 
techniques will spill less than 30% of total generation from all sources (not just wind 
and solar), and perhaps substantially less.  
 
In the case of wind and solar, it is most economical and practical to "overbuild" and 
curtail generation from technologies that are relatively inexpensive, relatively easy to 
control, relatively variable, and relatively abundant. We assume therefore that any 
overcapacity for the entire system is built into onshore wind and utility-scale solar PV 
plants. We do not assume any over-capacity for offshore wind because it is more 
expensive and less variable than is onshore wind, and we do not assume any over-
capacity for rooftop PV because it is more expensive and more difficult to manage than 
is utility scale PV. We also assume that solar thermal with storage is not overbuilt on 
account of it having its own storage capacity.  
 
With the cost estimates developed here (Table S13), it generally is less costly to build all 
of the over-capacity into onshore wind farms. Therefore, in the comparison, discussed 
below,  of the cost of over-capacity with the cost of decentralized storage, we vary the 
capacity-factor multiplier for onshore wind.  
 
Geothermal and hydropower.  For geothermal and hydropower, which are less variable 
on short time scales than wind and solar, the capacity-factor multipliers in our analysis 
are slightly greater than 100% on account of these being used more steadily in a 100% 
WWS system than in the base year. 
 
Capacity factor: long-run change rate (+) 
 
For coal, oil, gas, nuclear, biomass, geothermal, and hydropower plants, we base our 
estimates on the rate of change in the capacity factor from 2014 to 2040, as estimated in 
the EIA's (2014f) AEO 2014. For wind and solar systems we use our judgment.  
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Capacity factor: final value 
 
The maximum allowable capacity factor is 94%.  
 
Variable and fixed operating and maintenance (O&M) costs (unadjusted average)  
 
Most analyses distinguish “variable” from “fixed” O&M costs. Variable O&M costs 
generally are proportional to power output and hence typically are expressed in terms 
of cost per unit of generation ($/kWh). Fixed O&M costs include periodic capital and 
other expenditures that generally are related to the capacity rather than the generation 
of the plant, and hence are expressed in $/kW/year. We assume that fixed O&M costs 
do not include the cost of major refurbishment for the purpose of life extension, which 
we treat separately. 
 
In this section we estimate “unadjusted average” costs, meaning that the estimates do 
not (yet) account for the effect on discounted present worth of the actual temporal 
variation in O&M costs, which we treat separately. 
 
Our estimates of O&M costs are meant to include all the costs of operating and 
maintaining a power plant other than fuel costs and ongoing capital costs for the 
purpose of life extension. Thus, our estimates of O&M costs include administrative 
costs, insurance costs, plant overhead, and so on. However, O&M costs can be defined 
differently by different sources, and in some cases it is not clear what the reported 
estimates include.  
 
Our estimates are based partly on a review of the literature (Table S14), and partly on 
actual O&M costs reported for electric utilities (Table S10).  The actual reported costs are 
from the Federal Regulatory Energy Commission (FERC), which  collects data on 
operating expenses of major investor-owned electric utilities in the U.S. (Table S10).  
 
FERC Form 1 asks for operating expenses and maintenance expenses (separately) in 8 
different categories (http://www.ferc.gov/docs-filing/forms/form-1/form-1.pdf),  
 
• power production 
• transmission 
• regional market 
• distribution 
• customer accounts  
• customer and service and informational  
• sales  
• administrative and general.  
 
For nuclear SMR we assume the same O&M costs as for nuclear APWRs. We assume 
that CSP without storage has 90% of the fixed O&M cost of CSP with storage. For PVs, 
the fixed O&M cost here includes typical estimates of the cost of inverter replacement. 
However, as discussed under “capital costs,” we have estimated the annualized inverter 
cost separately. To avoid double counting, in the calculation of "periodic costs" we 
subtract from the input fixed O&M the fixed O&M charge implicit in our separately 
estimated inverter cost.   
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Table S10. Average reported power-plant operating expenses for major U.S. investor-
owned electric utilities (year-2013 cents/kWh) 
 

Year Operation and maintenance Fuel 

 
Nuclear 

Fossil 
Steam Hydro Other Nuclear 

Fossil 
Steam Hydro 

 
     

Other 
2002 1.76 0.66 0.79 0.71 0.58 2.02 0.00 4.00 
2003 1.77 0.67 0.71 0.71 0.57 2.13 0.00 5.40 
2004 1.72 0.73 0.79 0.77 0.55 2.18 0.00 5.41 
2005 1.57 0.72 0.78 0.65 0.54 2.52 0.00 6.44 
2006 1.66 0.76 0.73 0.64 0.55 2.60 0.00 6.07 
2007 1.68 0.77 1.02 0.62 0.55 2.62 0.00 6.44 
2008 1.73 0.79 1.04 0.70 0.57 3.06 0.00 6.91 
2009 1.74 0.87 0.89 0.60 0.57 3.45 0.00 5.54 
2010 1.82 0.85 0.96 0.58 0.70 2.92 0.00 4.56 
2011 1.83 0.83 0.92 0.59 0.72 2.80 0.00 4.01 
2012 1.87 0.78 1.15 0.53 0.72 2.45 0.00 3.09 

Average  
2002-2012 1.74 0.77 0.89 0.65 0.60 2.61 0.00 5.26 
Average  
2008-2012 1.80 0.82 0.99 0.60 0.66 2.94 0.00 4.82 

 
Source: Federal Energy Regulatory Commission, FERC Form 1, "Annual Report of Major Electric Utilities,” 
as reported by the EIA for its Electric Power Annual 
(http://www.eia.gov/electricity/annual/html/epa_08_04.html). “Other” includes gas turbines, internal 
combustion engines, photovoltaics, and wind plants. FERC.  
 
 
Annual rate of change in O&M costs (+/-) 
 
We estimate two rates of change in O&M costs: one up to the  L*, which is the point at 
which any life-extension investment would occur, and one after L* until the end of the 
facility life L. We take the present worth of the actual O&M stream, given the assumed 
rates of change, annualize the present worth, and divide the resultant annualized 
(discounted) cost by the present worth calculated with a zero discount rate. This ratio of 
the discounted to the undiscounted O&M stream then is multiplied by the unadjusted 
average O&M cost input. Note that we calculate the undiscounted present worth 
through a period of time between L* and L because we assume that the average 
(undiscounted) cost estimates in the literature generally do not pertain to the entire life 
of a facility after life-extension measures. 
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We assume that the FERC Form 1 results shown in Table S10 include O&M expenses for 
the first category, “power production.” As shown on Form 1, the “power production” 
category includes supervision, engineering, rents, allowances, and miscellaneous, but 
not insurance, taxes, and general administration, which are included in the category 
“administrative and general.” It is not clear whether the results of Table S10 include any 
of these administrative and general expenses. If they do not, then they slightly 
underestimate O&M expenses as we define then.  
 
In any event, the data in Table S10 are broadly similar to the estimates in the literature 
(Table S14), except that the Table S10 data for nuclear O&M costs are slightly higher 
than the estimates in Table S14. Our assumptions result in costs close to those reported 
in Table S10.  
 
Data in Byrne (2013) and Barbose et al. (2014b) indicate that for wind, fixed O&M 
expenses are not constant but increase over the life of the project (6%/year according to 
Byrne et al., 2013). The EIA (1995) and the Nuclear Energy Institute (2014)  show that 
O&M costs for nuclear power plants increase with age (2.5%/year according to the 
Nuclear Energy Institute, 2014). For other technologies our assumptions are based on 
our assessment of the technology. We assume that if the plant is refurbished and its life 
is extended, then O&M costs stop increasing, but that otherwise, they increase at a 10% 
to 40% higher rate than prior to L*, depending on the technology.  
 
Fuel cost: (national average): background 
 
Throughout this cost analysis we wish to estimate the true economic cost, which is 
the area under the long-run supply curve. The per-unit economic cost (e.g., the cost 
of fuel in $ per unit of energy) is equal to the area under this supply curve over some 
region of quantity divided by the quantity. This can be interpreted as the average 
long-run economic cost per unit.  
 
This average long-run economic cost per unit generally is not the same as the price, 
which in a competitive market is based on the marginal cost. With supply curve rising 
due to increasing scarcity of labor and material inputs, the marginal cost  and hence 
the price will be higher than the average cost. The difference between the price and 
the average cost is producer surplus (PS), which is not an economic cost but rather is 
a transfer of wealth from consumers to producers. In sectors of the economy that are 
non-competitive or have sharply rising cost curves – such as the oil industry –PS can 
be quite large.  
 
Given this, there are in general two ways to estimate the economic cost of fuels, 
exclusive of PS: 1) build up an estimate of average cost from capital costs, feedstock 
costs, labor costs, and so on, or 2) start with known prices and subtract the portion 
that represents PS, which as just explained is the non-cost (pure transfer) component 
of price. For new, developing systems for which there are not good data on the price 
of the mature technologies, we must use method #1. However, for mature fuels, such 
as are considered here, it is easier to use method #2, which is to start with the price 
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and subtract an estimate of PS. This is what we do for coal, natural gas, oil, nuclear 
fuel, and biomass used by power plants.  
 
As mentioned above, here we estimate national-average costs. In the next main section 
we estimate state or region-specific cost adjustments.  
 
Fuel cost (year-2012 dollars): Starting estimates of fuel prices 
 
The EIA (2014c) projects $/million-BTU prices of coal, natural gas, distillate fuel, 
residual fuel oil, nuclear fuel, and biomass, to the electricity-generating sector, through 
the year 2040. (The values for nuclear fuel and biomass are not published but are 
available from the EIA on request.) We adopt their reference-case projections for the 
U.S. through the year 2040 and extend them to 2075 using a moving 10-year linear 
extrapolation. For our base-year analysis we use these EIA estimates as is; i.e., we have 
a single value, not a different “low” and “high” estimate. However for our target-year 
analysis we do estimate “low” and “high” values; we assume that the low-cost value is 
10% below the (extended) EIA projection and that the high-cost value is 10% above.  
 
We assume that microturbines and fuel cells use natural gas.  
 
Fuel cost (year-2012 dollars): deducting producer surplus 
 
Producer surplus in the oil industry can be substantial because oil is a worldwide 
commodity and a handful of countries own very low-cost reserves, resulting in a non-
competitive global market with much of the supply curve far below the prevailing oil 
price. This is not the case for other fuels because most suppliers to a given national or 
regional market have access to resources of similar cost. Given this, we assume the 
following PS fractions of the prices estimated above:  
 
 
Fuel LCHB HCLB References  and notes 
Coal 0.06 0.04 Low because of competitive access to low-cost resources 
Natural 
gas 

0.10 0.06 Slightly higher than for coal because of presumably steeper 
supply curve 

Oil 0.60 0.50 Based on Delucchi et  al. (2015) estimates of the PS for 
gasoline made from U.S. crude oil given a 50%-100% 
reduction in fuel use. 

Nuclear 0.06 0.04 Low because of competitive access to low-cost resources 
Biomass 0.06 0.04 Low because of competitive access to low-cost resources 
 
 
Combustion efficiency: technology base year, 2013 
 
Our estimates are based on a review of the literature (Table S14 and other sources). 
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Combustion efficiency: long-run limit 
 
Our estimates are based on a review of the literature (Table S14 and other sources). 
 
Combustion efficiency: annual change rate (+) 
 
Our assumptions. 
 
Transmission, distribution, storage, gap filling: cost of the T&D system in the 
neat-term base year and for the BAU in the target year           
 
The EIA’s (2014c) AEO projects the real (constant-dollar) cost of the U.S. transmission 
and distribution (T&D)  system though the year 2040. We extend this projection to 
the year 2075 using a 10-year moving linear extrapolation. For our estimates of the 
cost of delivered electricity in (i) the near-term base year, and (ii) the long-term target 
year in the BAU scenario, we use the EIA’s AEO estimates of the T&D cost, without 
any adjustments. For our estimates of the cost of delivered electricity in the long-term 
target year in the 100% WWS scenario, we start with the EIA’s AEO cost projections 
and then incorporate the costs of modifications to the T&D system due to more 
decentralized generation and additional supply-and-demand balancing measures in 
the 100% WWS scenario. These modifications are discussed in the following 
subsections.  
 
Transmission, distribution, storage, gap filling: % of plants distributed or on-site, 
long-run limit (100% WWS scenario only) 
 
The 100% WWS scenario has more distributed and on-site generation than does the 
BAU scenario. Distributed and on-site generator plants do not require the use of the 
baseline (BAU) long-distance transmission system and may not require the same 
distribution system as in the BAU. Thus, as a 100% WWS system develops it will 
require less expansion of the transmission system, and possibly less expansion of the 
distribution system, than in the BAU scenario (IREC, 2014; Electricity Innovation Lab, 
2013; Beach and McGuire, 2013). In addition, Repo et al. (2006) argue that distributed 
generation systems can reduce the energy-related and power-related variable costs of 
transmission and distribution systems. 
 
To estimate the cost impacts of these potential changes in usage of the transmission 
or distribution system, we start with EIA (2014c) AEO reference-case projections of 
the costs of electricity transmission and distribution over time. We  assume that these 
annualized costs are a function of the lifetime and the capacity of the transmission or 
distribution system. We make assumptions about how distributed and on-site 
systems change the throughput and capacity of transmission and distribution 
systems, and posit simple relationships between throughput and lifetime, and 
between capacity and cost, in the long-run limit. The estimated cost changes are 
relatively minor.  
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Transmission, distribution, storage, gap filling: change rate (+) 
 
See discussion above. This refers to the rate of approach of the long-run limit of 
distributed-generation and on-site generation shares.  
 
Transmission, distribution, storage, gap filling : additional long-term (2050) 
transmission costs (100% WWS scenario only) 
 
These are costs for an upgraded, expanded, long-distance high-voltage DC transmission 
system that are i) not included in our estimates of capital costs for generation 
technologies, and ii) in addition to the cost of the baseline transmission system (the 
BAU system adjusted for increased distributed and on-site generation in the 100% WWS 
scenario). Given that most capital-cost estimates include all connections to the existing 
transmission and distribution network,  the additional costs here generally comprise 
expansions to the transmission system for the purpose of integrating diverse sources of 
renewable energy. We assume that in the 100% WWS scenario, all WWS technologies 
are part of an integrated, balanced renewable energy system with an expanded 
transmission grid, and therefore we spread out the "additional (land-based) 
transmission" cost over all WWS generators in the 100% WWS scenario. 
 
We calculate this additional transmission cost using Delucchi and Jacobson's (2011) 
detailed method, with new inputs as follows:  
 
1) We distinguish between an expanded onshore land-based grid, the cost of which is 
assigned to all WWS generators including offshore wind, and an expanded offshore 
grid, the cost of which is assigned to offshore wind only. The expanded offshore grid 
here is sea-based transmission in addition to the generic windfarm-to-shore connections 
that already are included in our estimates of the capital cost of offshore wind farms.  
 
We assign the cost of the additional long-distance onshore grid to all generators in the 
100% WWS scenario, including on-site generators such as solar PV that do not transmit 
to the grid, because the long-distance grid, like system storage, in principle is part of a 
system-side supply-and-demand balancing that depends on the generation 
characteristics of all technologies.  
 
2) Additional long-distance transmission costs apply only to the 100% WWS scenario in 
the long-term, target-year analysis, because there are no such additional costs in the 
near-term, base-year analysis.  
 
3) The average length of additional transmission for the portion of the energy system 
that effectively sends all of its output through the new transmission is 750 to 1000 miles 
for onshore systems and 50 to 100 miles for offshore wind systems.  
 
4) We assume that 30% to 45% of total WWS generation (all generators except offshore 
wind) is sent through the new onshore long-distance grid and that 15% to 25% of 
offshore wind generation is sent through the extended-transmission offshore grid.  
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Note that assumptions 3) and 4) are not the result of a comprehensive analysis of the 
least-cost combination of storage, long-distance transmission, and over-capacity in a 
100% WWS system but rather represent our judgment of what is likely to be needed in a 
100% WWS system.  
 
5) The year-round average current capacity factor, as a fraction of the rated capacity, 
originally used to estimate transmission losses, now is used also as the overall energy 
(or power) capacity factor for calculating the transmission-system cost. (Given a 
constant voltage, the ratio of transmitted amp-hours to maximum amp-hours is the 
same as the ratio of transmitted energy to maximum energy.)  The overall capacity 
factor for the transmission system depends on the capacity of the transmission system 
relative to the capacity of the connected generation centers, the extent to which 
individual generation centers have complementary generation profiles, and other 
factors, but it will be at least as great as the capacity factor for individual wind farms. 
We assume 35% to 45% for the onshore system, and 40% to 50% for the offshore system.  
 
6) We estimate the cost per kWh delivered out of the transmission system into the 
distribution system, accounting for losses during transmission but not during 
distribution. (We assume that losses in distribution are accounted for in the estimates of 
the $/kWh figures we use for distribution-system costs.) 
 
Transmission, distribution, storage, gap filling : other long-term (2050) storage and 
related costs (100% WWS scenario only) 
 
In the 100% WWS scenario, additional options for balancing supply and demand 
(beyond using an expanded long-distance transmission grid) include demand response, 
supply prediction, use of gas-fired back-up, energy storage, and over-building 
generation capacity (Jacobson and Delucchi, 2011). We assume that demand response 
and supply prediction cost very little, and that gas-fired back up will almost never be 
needed (e.g., Hart and Jacobson, 2011). Therefore, at this point in our analysis, we 
consider the cost of decentralized energy storage and the cost of over-building 
generation capacity.  
 
We estimate the cost of several energy-storage options, including vehicle-to-grid (V2G), 
underground thermal-energy storage (UTES), pumped-hydro storage (PHS), sensible-
heat thermal-energy storage (STES), and phase-change materials (PCM). For V2G, we 
update the calculations of the battery-degradation cost in Delucchi and Jacobson (2011), 
and estimate that cycling 10% to 15% of all delivered power through V2G would cost 
$0.003 to $0.006 (0.3 to 0.6 cents) per all-kWh delivered.  
 
Our estimates of the costs of the other decentralized energy-storage options are from 
Jacobson et al. (2015), who develop cost estimates as part of a grid-integration model of 
a 100% WWS energy system for the U. S. In Jacobson et al. (2015), the storage systems 
are sized so that the entire set of storage technologies ensures that the grid matches 
WWS supply with all-sector end-use demand with zero loss of load over six years of 
simulation. Table S11 shows the estimated $/kWh cost for each option,  equal to the 
annualized capital cost plus O&M cost divided by total energy delivered for load. 
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Following Jacobson et al. (2015), we assume that energy-storage costs of Table S11 – 0.05 
to 0.70 cents per all-kWh delivered – apply to the entire WWS system, and hence to 
every individual generating technology in the system, in the 100% WWS scenario.  
 
How do the results of Table S11 compare with the approach of over-building generating 
capacity (and spilling unused generation) in order to balance supply and demand? 
Because we have not done a formal analysis of the amount of over-capacity needed to 
balance and demand, we answer this question by evaluating the level of over-capacity, 
represented by a reduction in the capacity factor and an increase in spillage, at which 
the resultant system-wide average costs equal the system-wide average costs in the case 
in which storage is used to balance supply and demand (Table S11). The cost of over-
capacity is the increase in the annualized initial cost of generation due to the decrease in 
the capacity factor. We estimate this extra cost by reducing the capacity-factor 
multiplier for onshore wind and calculating the increased cost of wind power’s share of 
the WWS generation mix, using the generator costs of Table S13 and the generation 
shares by generator discussed earlier. 
 
Table S11. Annualized cost of electricity storage technologies 
 

Storage technology 

Capital cost 
of storage 

beyond 
power 

generation 
($/maximum-
deliverable-

kWh-th) 

Assumed 
energy 
storage 
capacity 

(maximum-
deliverable 

TWh) 

Operations 
and 

maintenance 
cost (% of 

capital cost 
per year) Lifetime (years) 

Annualized 
capital cost 
plus O&M 

cost  
(cents/all-

kWh-
delivered) 

Non-UTES Low High   Low High Low High LCHB HCLB 
PHS 12.00 16.00 0.808 1.0% 2.0% 35.0 25.0 0.003 0.008 
STES 0.13 12.90 0.350 1.0% 2.0% 35.0 25.0 0.000 0.003 
PCM-ice 12.90 64.50 0.525 1.0% 2.0% 35.0 25.0 0.002 0.020 
PCM-CSP 10.00 20.00 11.60 1.0% 2.0% 35.0 25.0 0.037 0.136 
Total/average 9.98 21.33 13.29         0.04 0.17 
UTES 0.07 1.71 5.28 1.0% 2.0% 35.0 25.0 0.01 0.53 
All storage 10.05 23.04 541.6         0.05 0.70 
 
Source: Based on Jacobson et al. (2015). 
 
UTES = Underground thermal energy storage. PHS = pumped hydro storage; STES = Sensible heat 
thermal energy storage; PCM = Phase-change materials; CSP=concentrated solar power. All storage is for 
14 hours except UTES. CSP costs exclude the additional mirrors, which are included in the cost of a CSP 
plant with storage. UTES costs exclude the cost of the solar collectors, which are tracked separately. 
 
 
 
Table S12 shows the wind capacity-factor multiplier and associated system-wide 
spillage (without any storage) that results in the same average overall system cost of 
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delivered electricity as in the case of using the storage-cost estimates of Table S11 with 
zero over-capacity and storage.  
 
 
Table S12. Levels of over-capacity and spillage that result in the same system costs as 
does using decentralized storage 
 

LCHB HCLB 
Wind CF multiplier System-wide spill Wind CF multiplier System-wide spill 

90% 3.5% 57% 23.4% 
 
The “Wind CF multiplier” applies to onshore wind only. The “system-wide spill” is equal to the amount 
of unused generation (due to excess capacity) divided by total delivered electricity for load.  
 
 
Because system costs increase with decreasing CF multipliers and increasing spillage, 
the results in Table S12 indicate that in the LCHB case, decentralized energy storage is 
less costly than is over-capacity for any on-shore wind CF multiplier below and 90% 
and spillage above 3.5%. In the HCLB case, storage is less costly than is over-capacity 
for any CF multiplier below 57% and spillage above 23%.  
 
As discussed earlier, analyses that explore a limited range of options for balancing 
supply and demand in an all-renewables energy system indicate that up to 30% of 
generation would end up being spilled. This means that it almost certainly will be 
impossible to balance supply and demand with only 3.5% spillage, but that it might 
well be possible to balance supply and demand with 23% spillage. Thus, in the LCHB 
case, decentralized storage that balances supply and demand almost certainly will be 
less costly than over-capacity that balances supply and demand. In the HCLB case, -
capacity might be able to balance supply and demand at a cost similar to or even 
slightly lower than the cost of decentralized storage.  
 
With these considerations, we assume, somewhat conservatively, that the cost of extra 
measures needed to balance supply and demand is given by the range of costs of 
decentralized storage estimated in Table S11. This is conservative because of the 
possibility that judicious use of over-capacity could result in lower total system costs, 
and because the grid-integration analysis that produced the results in Table S11 was 
itself not a least-cost optimization analysis.  
 
 
Table S13. Cost and performance assumptions for electricity generating technologies 
 
See accompanying spreadsheet (Delucchi et al., 2015). 
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Table S14. Tabulation of main literature used in our analysis of the LCEO 
 
  Capital cost, near-term or high-cost case (2013-$/kW) 

Source -> EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC LBNL, others 

Year of dollars in source -> 2012 2014 2009 2012 2013 
GDP price deflator multiplier -> 1.015 0.984 1.067 1.015 1.000 

Advanced pulv. coal 2969   3085     
Advanced pulv. coal w/CC 

 
6687 7002 

  IGCC coal 3827   4280     
IGCC coal w/CC 6665 6286 7044 

  Gas peaking (turbine) 683 984 695     
Gas combined cycle 1036 1155 1313 

  Diesel generator   787       
Nuclear, APWR 5583 6640 6511 

  Nuclear, SMR         9000 
Geothermal 2531 6529 6340 

  Microturbine   3738       
Biomass direct 3977 3440 4088 

  Hydropower 2471   3736     
On-shore wind 2238 1771 2113 

 
1750 

Off-shore wind 6284 5410 3533     
Fuel cell 7149 7378 

   Solar thermal (CSP) without storage 5120    4000-4500 
Solar thermal (CSP) with storage   6148 7535   6000-8500 
PV utility crystalline tracking 3617 1722 2796 

 
3200 

PV utility crystalline fixed   1476 2708   L:1690 H:3000 
PV utility thin film tracking 3617 1722 

  
2700 

PV utility thin film fixed   1476     2700 
PV commercial rooftop 

 
2951 5113 

 
L:2390 H:3500 

PV residential rooftop   4427 6351   L:3740 H:4500 
Wave power 

  
9965 

  Tidal power     6340     
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  Capital cost, long-term or low-cost case (2013-$/kW) 

Source  -> EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC LBNL, others 

Technology  
     Advanced pulv. coal 2573 2472 3085     

Advanced pulv. coal w/CC 
  

6020 
  IGCC coal 3158 3204 4280     

IGCC coal w/CC 5261 
 

7044 
  Gas peaking (turbine) 545 787 695     

Gas combined cycle 858 884 1313 
  Diesel generator   492       

Nuclear, APWR 4434 4279 6511 
 

L:3800 H:6500 
Nuclear, SMR         6000 
Geothermal 3227 3956 6340 

  Microturbine   2263       
Biomass direct 3340 2579 4088 

  Hydropower 2444   3736     
On-shore wind 1976 1377 2113 

  Off-shore wind 5077 3050 3191     
Fuel cell 

 
3738 

   Solar thermal (CSP) without storage 4101     
Solar thermal (CSP) with storage   8608 5016    3500-6000 
PV utility crystalline tracking 3011 

 
2167 

 
1950 

PV utility crystalline fixed     1814    1750 
PV utility thin film tracking 3011 

    PV utility thin film fixed           
PV commercial rooftop 

 
2459 2796 

 
1900 

PV residential rooftop   3443 3127   2100 
Wave power 

  
2738 

  Tidal power     1595     
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  Fixed O&M, near-term or high-cost case (2013-$/kW/yr) 

Source -> EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology 
     Advanced pulv. coal 31.6   24.5     

Advanced pulv. coal w/CC 
 

78.7 37.6 
  IGCC coal 52.2   33.2     

IGCC coal w/CC 73.9 71.8 47.4 
  Gas peaking (turbine) 7.1 24.6 5.6     

Gas combined cycle 15.6 5.4 6.7 
  Diesel generator   14.8       

Nuclear, APWR 94.7 113.1 135.6 
  Nuclear, SMR           

Geothermal 114.6 0.0 0.0 
  Microturbine   0.0       

Biomass direct 107.2 93.5 101.4 
  Hydropower 15.1   16.0     

On-shore wind 40.1 39.3 64.0 
 

28.0 
Off-shore wind 75.1 98.4 106.7     
Fuel cell 0.0 0.0 

   Solar thermal (CSP) without storage 68.3    60 
Solar thermal (CSP) with storage   78.7 53.4   60-70 
PV utility crystalline tracking 25.1 19.7 51.2 

 
30.0 

PV utility crystalline fixed   12.8 51.2   25.0 
PV utility thin film tracking 25.1 19.7 

  
30.0 

PV utility thin film fixed   12.8     25.0 
PV commercial rooftop 

 
19.7 53.4 

  PV residential rooftop   29.5 53.4     
Wave power 

  
505.9 

  Tidal power     211.3     
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  Fixed O&M, long-term or low-cost case (2013-$/kW/yr) 

Source  -> EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology  
     Advanced pulv. coal 31.6 39.3 24.5     

Advanced pulv. coal w/CC 
  

37.6 
  IGCC coal 52.2 61.2 33.2     

IGCC coal w/CC 73.2 
 

47.4 
  Gas peaking (turbine) 7.1 4.9 5.6     

Gas combined cycle 15.6 6.1 6.7 
  Diesel generator   15.0       

Nuclear, APWR 94.7 93.5 135.6 
  Nuclear, SMR           

Geothermal 215.1 0.0 0.0 
  Microturbine   0.0       

Biomass direct 107.2 93.5 101.4 
  Hydropower 16.5   16.0     

On-shore wind 41.1 34.4 64.0 
  Off-shore wind 75.1 59.0 106.7     

Fuel cell 
 

0.0 
   Solar thermal (CSP) without storage 68.3     

Solar thermal (CSP) with storage   113.1 53.4    40-50 
PV utility crystalline tracking 

 
19.7 35.2 

  PV utility crystalline fixed     35.2     
PV utility thin film tracking 

 
19.7 

   PV utility thin film fixed           
PV commercial rooftop 

 
12.8 35.2 

  PV residential rooftop   24.6 35.2     
Wave power 

  
138.8 

  Tidal power     54.4     
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Variable O&M, near-term or high-cost case (2013-$/MWh) 

Source -> EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology 
     Advanced pulv. coal 4.5   4.0     

Advanced pulv. coal w/CC 
 

4.9 6.4 
  IGCC coal 7.3   7.0     

IGCC coal w/CC 8.6 8.4 11.3 
  Gas peaking (turbine) 10.5 7.4 31.9     

Gas combined cycle 3.3 2.0 3.9 
  Diesel generator   0.0       

Nuclear, APWR 2.2 0.8 n.r. 
  Nuclear, SMR           

Geothermal 0.0 39.3 33.1 
  Microturbine   21.6       

Biomass direct 5.3 14.8 16.0 
  Hydropower 2.7   6.4     

On-shore wind 0.0 0.0 0.0 
  Off-shore wind 0.0 17.7 0.0     

Fuel cell 43.6 49.2 
   Solar thermal (CSP) without storage 0.0     

Solar thermal (CSP) with storage   0.0 0.0     
PV utility crystalline tracking 0.0 0.0 0.0 

  PV utility crystalline fixed   0.0 0.0     
PV utility thin film tracking 0.0 0.0 

   PV utility thin film fixed   0.0       
PV commercial rooftop 0.0 0.0 0.0 

  PV residential rooftop   0.0 0.0     
Wave power 

 
0.0 n.r. 

  Tidal power   0.0 n.r.     
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  Variable O&M, long-term or low-cost case (2013-$/MWh) 

Source  -> EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology  
     Advanced pulv. coal   2.0 4.0     

Advanced pulv. coal w/CC 
  

6.4 
  IGCC coal   6.9 7.0     

IGCC coal w/CC 
  

11.3 
  Gas peaking (turbine)   4.6 31.9     

Gas combined cycle 
 

3.4 3.9 
  Diesel generator   0.0       

Nuclear, APWR 
 

0.3 n.r. 
  Nuclear, SMR           

Geothermal 
 

29.5 33.1 
  Microturbine   17.7       

Biomass direct 
 

14.8 16.0 
  Hydropower     6.4     

On-shore wind 
 

0.0 0.0 
  Off-shore wind   12.8 0.0     

Fuel cell 
 

29.5 
   Solar thermal (CSP) without storage 0.0     

Solar thermal (CSP) with storage   0.0 0.0     
PV utility crystalline tracking 

  
0.0 

  PV utility crystalline fixed     0.0     
PV utility thin film tracking 

     PV utility thin film fixed           
PV commercial rooftop 

 
0.0 0.0 

  PV residential rooftop   0.0 0.0     
Wave power 

  
n.r. 

  Tidal power     n.r.     



 72 

 
 

  Fuel cost, near-term or high-cost case (2013-$/MBTU) 

Source -> EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology 
     Advanced pulv. coal 2.63   n.r.     

Advanced pulv. coal w/CC 
 

1.96 n.r. 
  IGCC coal 2.63   n.r.     

IGCC coal w/CC 2.63 1.96 n.r. 
  Gas peaking (turbine) 5.26 4.43 n.r.     

Gas combined cycle 5.26 4.43 n.r. 
  Diesel generator   28.29       

Nuclear, APWR n.r. 0.69 n.r. 
  Nuclear, SMR           

Geothermal 0.00 0.00 0.00 
  Microturbine   4.43       

Biomass direct n.r. 1.97 n.r. 
  Hydropower 0.00   0.00     

On-shore wind 0.00 0.00 0.00 
  Off-shore wind 0.00 0.00 0.00     

Fuel cell n.r. 4.43 
   Solar thermal (CSP) without storage 0.00     

Solar thermal (CSP) with storage   0.00 0.00     

PV utility crystalline tracking 0.00 0.00 0.00 
  PV utility crystalline fixed   0.00 0.00     

PV utility thin film tracking 0.00 0.00 
   PV utility thin film fixed   0.00       

PV commercial rooftop 
 

0.00 0.00 
  PV residential rooftop   0.00 0.00     

Wave power 
  

0.00 
  Tidal power     0.00     
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  Fuel cost, long-term or low-cost case (2013-$/MBTU) 

Source  -> EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology  
     Advanced pulv. coal 3.53 1.96 n.r.     

Advanced pulv. coal w/CC 
  

n.r. 
  IGCC coal 3.53 1.96 n.r.     

IGCC coal w/CC 3.53 
 

n.r. 
  Gas peaking (turbine) 10.40 4.43 n.r.     

Gas combined cycle 10.40 4.43 n.r. 
  Diesel generator   28.29       

Nuclear, APWR n.r. 0.69 n.r. 
  Nuclear, SMR           

Geothermal 0.00 0.00 0.00 
  Microturbine   4.43       

Biomass direct n.r. 0.98 n.r. 
  Hydropower 0.00   0.00     

On-shore wind 0.00 0.00 106.73 
  Off-shore wind 0.00 0.00 106.73     

Fuel cell n.r. 4.43 
   Solar thermal (CSP) without storage 0.00     

Solar thermal (CSP) with storage 
 

0.00 0.00     

PV utility crystalline tracking 0.00 0.00 0.00 
  PV utility crystalline fixed   0.00 0.00     

PV utility thin film tracking 0.00 0.00 
   PV utility thin film fixed   0.00       

PV commercial rooftop 
 

0.00 0.00 
  PV residential rooftop   0.00 0.00     

Wave power 
  

0.00 
  Tidal power     0.00     



 74 

 
 

  Capacity factor, near-term or high-cost case (%) 

Source -> EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology 
     Advanced pulv. coal 85%   84%     

Advanced pulv. coal w/CC 
 

93% 84% 95% 
 IGCC coal 85%   80%     

IGCC coal w/CC 85% 75% 80% 89% 
 Gas peaking (turbine) 30% 10% 92% 94%   

Gas combined cycle 87% 40% 90% 92% 
 Diesel generator   30%       

Nuclear, APWR 90% 90% 90% 89% 80% 
Nuclear, SMR           

Geothermal 92% 80% 97% 
  Microturbine   95%       

Biomass direct 83% 85% 83% 65% 
 Hydropower 53%   93%     

On-shore wind 35% 30% 32% to 46% 28% 20% to 50% 
Off-shore wind 37% 37% 36% to 50% 38%   

Fuel cell n.r. 95% 
   Solar thermal (CSP) without storage 20%    20% to 28% 

Solar thermal (CSP) with storage   52% n.r.   40% to 50%  

PV utility crystalline tracking 25% 30% n.r. 11% 20% to 32% 
PV utility crystalline fixed   21% n.r.   18% to 30% 

PV utility thin film tracking 25% 30% 
  

33% 
PV utility thin film fixed   21%     16% to 31% 

PV commercial rooftop 
 

20% n.r. 
  PV residential rooftop   20% n.r.     

Wave power 
  

25% 
  Tidal power     28%     
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  Capacity factor, long-term or low-cost case (%) 

Source ->  EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology  
     Advanced pulv. coal 85% 93% 84%     

Advanced pulv. coal w/CC 
  

84% 97% 
 IGCC coal 85% 75% 80%     

IGCC coal w/CC 85% 
 

80% 91% 
 Gas peaking (turbine) 30% 10% 92% 96%   

Gas combined cycle 87% 70% 90% 94% 
 Diesel generator   95%       

Nuclear, APWR 90% 90% 90% 92% 90% 
Nuclear, SMR           

Geothermal 94% 90% 97% 
  Microturbine   95%       

Biomass direct 83% 85% 83% 
  Hydropower 51%   93%     

On-shore wind 34% 52% 35% to 46% 
  Off-shore wind 37% 43% 38% to 50%     

Fuel cell n.r. 95% 
   Solar thermal (CSP) without storage 20%     

Solar thermal (CSP) with storage   80% n.r.    66% 

PV utility crystalline tracking 25% 
 

n.r. 
  PV utility crystalline fixed     n.r.     

PV utility thin film tracking 25% 
    PV utility thin film fixed           

PV commercial rooftop 
 

23% n.r. 
  PV residential rooftop   23% n.r.     

Wave power 
  

20% 
  Tidal power     22%     



 76 

 
  Construction time, near-term or high-cost case (years) 

Source -> EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology 
     Advanced pulv. coal 4.0   4.6   4.8, 6.0 

Advanced pulv. coal w/CC 
 

5.5 5.5 5.0 
 IGCC coal 4.0   4.8    6.0 

IGCC coal w/CC 4.0 5.3 4.9 6.0  6.0 
Gas peaking (turbine) 2.0 2.1 2.5 2.0  3.0 
Gas combined cycle 3.0 3.0 3.4 3.0 3.0 

Diesel generator   0.3       
Nuclear, APWR 6.0 5.8 5.0 8.0 7.5, 6.0 

Nuclear, SMR           
Geothermal 4.0 3.0 3.0 

 
4.0 

Microturbine   0.3       
Biomass direct 4.0 3.0 3.0 1.0 4.0 

Hydropower 4.0   2.0   10.0, 3.0 
On-shore wind 3.0 1.0 1.0 2.0 1.0, 3.0 

Off-shore wind 4.0 1.0 1.0 3.0   
Fuel cell 3.0 0.3 

   Solar thermal (CSP) without storage 3.0    3.0 
Solar thermal (CSP) with storage   2.5 2.0     
PV utility crystalline tracking 2.0 1.0 1.1 1.0 2.2, 3.0 

PV utility crystalline fixed   1.0 1.4    3.0 
PV utility thin film tracking 2.0 1.0 

  
 3.0 

PV utility thin film fixed   1.0      3.0 
PV commercial rooftop 

 
0.3 0.5 

  PV residential rooftop   0.3 0.2     
Wave power 

  
2.0 

  Tidal power     2.0     
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  Construction time, long-term or low-cost case (years) 

Source ->  EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology  
     Advanced pulv. coal   5.0 4.6     

Advanced pulv. coal w/CC 
  

5.5 4.0 
 IGCC coal   4.8 4.8     

IGCC coal w/CC 
  

4.9 4.5 
 Gas peaking (turbine)   2.1 2.5 1.5   

Gas combined cycle 
 

3.0 3.4 2.0 
 Diesel generator   0.3       

Nuclear, APWR 
 

5.8 5.0 5.0 5.0 

Nuclear, SMR           
Geothermal 

 
3.0 3.0 

  Microturbine   0.3       
Biomass direct 

 
3.0 3.0 

  Hydropower     2.0     
On-shore wind 

 
1.0 1.0 

  Off-shore wind   1.0 1.0     
Fuel cell 

 
0.3 

   Solar thermal (CSP) without storage      
Solar thermal (CSP) with storage   2.5 2.0     
PV utility crystalline tracking 

  
0.8 

  PV utility crystalline fixed     1.0     
PV utility thin film tracking 

     PV utility thin film fixed           
PV commercial rooftop 

 
0.3 0.3 

  PV residential rooftop   0.3 0.1     
Wave power 

  
2.0 

  Tidal power     2.0     
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  Plant operating life, near-term or high-cost case (years) 

Source -> EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology 
     Advanced pulv. coal 40   n.r.    65-75  

Advanced pulv. coal w/CC 
 

40 n.r. 20 65-75 
IGCC coal 40   n.r.   65-75 

IGCC coal w/CC 40 40 n.r. 20 65-75 
Gas peaking (turbine) 30 20 n.r. 20   
Gas combined cycle 30 20 n.r. 20 55 

Diesel generator   20       
Nuclear, APWR 60+ 40 n.r. 60 60-80 

Nuclear, SMR           
Geothermal 40 20 n.r. 

  Microturbine   20       
Biomass direct 

 
20 n.r. 22 

 Hydropower 80   60     
On-shore wind 25 20 n.r. 24 

 Off-shore wind 25 20 n.r. 23   
Fuel cell 

 
20 

   Solar thermal (CSP) without storage      
Solar thermal (CSP) with storage   40 n.r.     
PV utility crystalline tracking 25 20 n.r. 25 40 

PV utility crystalline fixed   20 n.r.     
PV utility thin film tracking 25 20 

  
40 

PV utility thin film fixed   20       
PV commercial rooftop 

 
20 n.r. 

 
38 

PV residential rooftop   20 n.r.   36 
Wave power 20 

 
20 

  Tidal power 20   25     
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  Plant operating life,  long-term or low-cost case (years) 

Source ->  EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology  
     Advanced pulv. coal   40 n.r.     

Advanced pulv. coal w/CC 
  

n.r. 35 
 IGCC coal   40 n.r.     

IGCC coal w/CC 
  

n.r. 35 
 Gas peaking (turbine)   20 n.r. 35   

Gas combined cycle 
 

20 n.r. 35 
 Diesel generator   20       

Nuclear, APWR 
 

40 n.r. 60 
 Nuclear, SMR           

Geothermal 
 

20 n.r. 
  Microturbine   20       

Biomass direct 
 

20 n.r. 
  Hydropower     60     

On-shore wind 
 

20 n.r. 
 

30 to 35 

Off-shore wind   20 n.r.     
Fuel cell 

 
20 

   Solar thermal (CSP) without storage      
Solar thermal (CSP) with storage   40 n.r.     
PV utility crystalline tracking 

  
n.r. 

 
50 

PV utility crystalline fixed     n.r.     
PV utility thin film tracking 

    
50 

PV utility thin film fixed           
PV commercial rooftop 

 
20 n.r. 

 
48 

PV residential rooftop   20 n.r.   45 
Wave power 

  
20 

  Tidal power     25     
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  Fuel efficiency, near-term or high-cost case (%) 

Source -> EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology 
     Advanced pulv. coal 39%   36%     

Advanced pulv. coal w/CC 
 

28% 27% 34% 
 IGCC coal 39%   38%     

IGCC coal w/CC 32% 32% 29% 35% 
 Gas peaking (turbine) 35% 38% 33% 37%   

Gas combined cycle 53% 49% 51% 57% 
 Diesel generator   34%       

Nuclear, APWR 33% 33% 35% 100% 
 Nuclear, SMR           

Geothermal 100% 100% 100% 
  Microturbine   28%       

Biomass direct 25% 24% 24% 
  Hydropower 100%   100%     

On-shore wind 100% 100% 100% 100% 
 Off-shore wind 100% 100% 100% 100%   

Fuel cell 36% 52% 
   Solar thermal (CSP) without storage      

Solar thermal (CSP) with storage   100% 100%     

PV utility crystalline tracking 100% 100% 100% 100% 
 PV utility crystalline fixed   100% 100%     

PV utility thin film tracking 100% 100% 
   PV utility thin film fixed   100%       

PV commercial rooftop 
 

100% 100% 
  PV residential rooftop   100% 100%     

Wave power 
  

100% 
  Tidal power     100%     
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  Fuel efficiency, long-term or low-cost case (%) 

Source ->  EIA Lazard 
Black  & 
Veatch 

Parsons; 
DECC 

LBNL, 
others 

Technology  
     Advanced pulv. coal 39% 39% 36%     

Advanced pulv. coal w/CC 
  

28% 39% 
 IGCC coal 46% 39% 43%     

IGCC coal w/CC 41% 
 

33% 40% 
 Gas peaking (turbine) 40% 33% 33% 39%   

Gas combined cycle 54% 51% 51% 60% 
 Diesel generator   34%       

Nuclear, APWR 33% 33% 35% 100% 
 Nuclear, SMR           

Geothermal 100% 100% 100% 
  Microturbine   34%       

Biomass direct 25% 24% 27% 
  Hydropower 100%   100%     

On-shore wind 100% 100% 100% 
  Off-shore wind 100% 100% 100%     

Fuel cell 52% 47% 
   Solar thermal (CSP) without storage      

Solar thermal (CSP) with storage   100% 100%     
PV utility crystalline tracking 100% 

 
100% 

  PV utility crystalline fixed     100%     
PV utility thin film tracking 100% 

    PV utility thin film fixed           
PV commercial rooftop 

 
100% 100% 

  PV residential rooftop   100% 100%     
Wave power 

  
100% 

  Tidal power     100%     
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ANNOTATION OF MAIN LITERATURE SOURCES USED IN OUR ANALYSIS OF 
THE NATIONAL-AVERAGE LCOE (TABLE S14) 
 
EIA = Energy Information Administration; DECC = Department of Energy and Climate 
Change (United Kingdom); LBNL = Lawrence Berkeley National Laboratory; pulv. coal 
= pulverized coal; w/CC = with carbon capture; IGCC = integrated gasification 
combined cycle; APWR = advanced pressurized-water reactor; SMR = small modular 
reactor; CSP = concentrating solar power. 
 
EIA 
 
Near-term estimates are from Table 8.2 of EIA (2014a), except: near term fuel prices are 
2019 prices to the electric power sector (EIA, 2014c), and capacity factors are from EIA 
(2014b).  
 
Capital costs are "total overnight costs," for plants initiated in 2013, and include project 
contingency and "technological optimism" factors but exclude investment tax credits, 
learning effects, regional multipliers, and interest charges. Heat rate is higher-heating-
value (HHV) basis (EIA, 2013). What we call "construction time" the EPA calls "lead 
time," which is the time from project initiation to the plant coming on line.  
 
In the case of geothermal and hydro the values shown in Table S14 are the EIA’s 
estimates for “the least expensive plant that could be built in the Northwest Power Pool 
region, where most of the proposed sites are located” (EIA, 2014a, p. 97). (In its NEMS 
runs the EIA estimates site-specific marginal costs for geothermal and hydropower 
plants [EIA, 2014a, p. 97].)  
 
EIA (2014a) reports estimates for “advanced” and “conventional” gas/oil combined 
cycle plants, and “advanced” and “conventional” combustion turbines; the estimates 
shown here are for the “advanced” plants. What we call “advanced coal” the EPA calls 
“conventional coal” or “new scrubbed coal.”  
 
PV is fixed-tilt, single-axis tracking, of unspecified cell technology. 
 
O&M costs include administration expenses, taxes and insurance (EIA, 2013). However, 
the EIA estimates O&M costs for new plants only (Jones, 2014).  
 
We estimate long-term capital cost and fixed O&M costs by multiplying EIA's near-term 
estimates by the 2040/2019 LCOE ratios from EIA (2014b). We estimate long-term (year-
2050) fuel prices to the electric power sector by extrapolating EIA's 2040 price 
projections at the 2030-2040 rate of growth projected by EIA (2014c). 
 
Other notes: The EIA  notes that plant lifetimes depend in general on the economics of 
extending plant lifetime, which in turn depends on the cost of additional O&M, 
upgrades and refurbishing, regulatory requirements, competing alternatives, and so on. 
In the case of nuclear power, the EIA (2014c) notes that the Nuclear Regulatory 
Commission has approved 70% of US plants for a 20-year extension beyond the initial 
40-year license, and that “the nuclear power industry currently is developing strategies 
to submit license applications for additional 20-year life extensions that would allow 



 83 

plants to continue operating beyond 60 years” (p. IF-35). The EIA (2014c) AEO reference 
case assumes that nuclear plants operate beyond 60 years, but the “Accelerated Nuclear 
Retirements case assumes that O&M costs for nuclear power plants grow by 3% per 
year through 2040; [and] that all nuclear plants not retired for economic reasons are 
retired after 60 years of operation” (p. IF-35). (The EIA's [2010] AEO 2010 assumed that 
O&M costs increased by $30/kW after plants reached 30 years of age.)  Similarly, the 
EIA (2014c) assumes that in the "Accelerated Coal Retirements" case real O&M costs 
increase at 3% annually.  
 
The EIA (2014c) also projects fuel use and generation in the electric power sector, from 
which we can calculate fleet-average generation efficiency by fuel type. For coal-fired 
plants, the efficiency remains just below 33% throughout the projection period (to 2040), 
because virtually no new coal capacity is added. However, the efficiency of natural-gas 
fired generation increases from about 42% in 2013 to almost 48% in 2040, as the total 
installed capacity of combined-cycle plants increases 1.7% per year and the total 
installed capacity of conventional gas steam plants decreases at -1.2%/year over the 
projection period (EIA, 2014f). (Note again that these are averages across a fleet of 
plants of a mix of different technologies.)  
 
Lazard 
 
From Lazard (2014). Cost estimates exclude subsidies. Our capital-cost figures include 
their "EPC cost" (engineering, procurement, and construction) and "Other Owner 
Costs," but not their "capital costs during construction" because those are interest costs 
on capital during construction (Jalan, 2014), which most other studies exclude and 
which we estimate separately. Lazard's capital costs include generic costs to connect to 
regular transmission grid, including such costs for off-shore wind. Their "high" case 
figures for a diesel generator assumes intermittent usage. Solar thermal storage "low" 
has 18-hours of storage; "high" has 10 hours. Their estimates of O&M cover all operating 
expenditures including administration, insurance, and taxes (Jalan, 2014). Fixed O&M 
includes periodic capital expenditures (Jalan, 2014) but not decommissioning and waste 
disposal costs. 
 
Black & Veatch 
 
From Black and Veatch (2012). Technology ca. late 2009, early 2010. Costs in 2009 USD. 
Costs exclude electric switchyard, transmission tap-line, interconnection, and interest 
during construction. For non-commercial plants, they base their estimates on 
engineering studies of “nth plant costs.”  “Near term” is their estimate for 2010 (2020 
with carbon capture and sequestration); “long term” is their estimate for 2050. For 
thermal plants, the capacity factor we show here is equal to 100% minus their reported 
forced and planned outage rates. We assume that their heat rates are based on higher 
heating values. Geothermal is conventional hydrothermal. Wave and tidal estimates are 
based on their optimistic scenario, with the middle resource-availability band. For wave 
and tidal, “near term” is their estimates for 2015. In Black and Veatch hydropower life is 
"at least 50 years" (p. 106). PV utility estimates are for 100-MW systems; the technology 
is unspecified, so we assume crystalline-silicon. Their solar thermal has 6-hour storage. 
Wind capacity-factor range is for Class 3 to Class 7 resources. Offshore wind is fixed-
bottom technology. 
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Parsons; DECC 
 
Wind, solar, biomass estimates from U. K. Department of Energy and Climate Change 
(2013). Coal, gas, nuclear are low or high estimates for nth of a kind plant, from Parsons 
Binckerhoff (2013). Efficiency is based on lower heating values (LHVs). The capacity 
factor shown here is their “average lifetime load factor” for wind, solar, and biomass, 
and their “average availability” for coal, gas, and nuclear. 
 
LBNL, others 
 
Wind: Estimates of capacity factors, capital costs, and O&M costs are from Barbose et al. 
(2014b). Their capacity-factor range covers all individual project sites in 2012, and their 
fixed O&M estimates are for projects installed since 2000. Their estimates of O&M costs 
exclude administration, lease, insurance, and related costs. 
 
Photovoltaics (PVs): Near-term, installed capital-cost estimates (except lower-end, near-
term cost estimates) are based on installation prices (in $/kW-dc) are from Barbose et al. 
(2014a), as follows: Utility PV: capacity-weighted average installed price in 2013. Note 
that these are utility PV prices contracted several years prior to installation, and hence 
do not reflect recent price declines. Residential PV: price for systems <10 kW installed in 
2014. Commercial PV: price for systems >100 kW installed in 2014. PV near-term lower-
end prices are turnkey prices estimated for Q2 2014 from GTM Research (2014). PV 
commercial and residential long-term cost estimates shown here are Barbose et al. 
(2014a) reported prices in Germany, which Barbose et al. (2014a) state are indicative of 
the potential for further significant cost reductions in the U.S. Estimates for utility-PV 
capacity factors and utility-PV O&M costs are from Bolinger and Weaver (2014). (We 
use our judgment to interpret their O&M data.) Bolinger and Weaver (2014) note that 
utility-PV capacity factors depend primarily on the intensity of the solar resource, and 
secondarily on the inverter loading ratio.  
 
Goodrich et al. (2012) estimate that “evolutionary” cost reductions for PVs will result in 
the following system prices in the year 2020 (year-2010 dollars per peak-watt dc): 2.29 
residential rooftop, 1.99 commercial rooftop, 1.71 fixed-axis utility ground mount, 1.91 
one-axis utility-scale ground mount.  
 
PV system lifetime estimates are from Jacobson et al. (2014) and Bazilian et al. (2013). 
Wind lifetime estimate is based on Dvorak (2014) and Byrne (2013). 
 
Solar thermal (or Concentrated Solar Power [CSP]): Bolinger and Weaver (2014) 
estimate $6000/kW capital cost for a trough with 6-hours of storage. They suggest that 
the storage adds $1500/kW. They also estimate $60/kW/yr  for O&M for Solar thermal 
(CSP) without storage. US DOE (2012) estimates current costs of $4000-$8500/kW 
(capital) and $60-$70/kW/yr (O&M), with the low end for plants without storage and 
the high end for plants with storage. Current plants without storage have a capacity 
factor of 20%-28%; current plants with 6-7.5 hours of storage have a capacity factor of 
40%-50%.  
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DOE (2012) estimates “evolutionary” technology cost and performance in 2020: 
$6070/kW (overnight capital cost), $50kW/yr (O&M cost), 66.4% capacity factor, 14 
hours storage. DOE (2012) also estimates more aggressive “Sunshot"” cost and 
performance targets for 2020: $3560/kW, $40/kW/yr, 66.6% capacity factor, 14 hours 
storage (in year-2010-$.)  
 
By comparison, Nithyanandam and Pitchumani (2014) estimate that 14-hours storage in 
an optimal system costs less than $300/kW, and that total capital costs could be under 
the DOE Sunshot target.  
 
Nuclear:  Linares and Conchado (2014) assume 5 to 9 years construction time, 6-12% 
weighted-average cost of capital, and a capacity factor of 80%-90% for APWRs. Anadon 
et al. (2013) report the range of expert estimates of the capital cost of APWR Gen III 
technology in year 2030; Table S14 “long-term” capital costs are based on the 10th and 90th 
percentiles of the expert range.  
 
For nuclear SMRs, Table S14 capital cost estimates are “realistic” cost estimates from 
Cooper (2014) for 2020 (our near term) and 2030 (our long term).   
 
Construction time and operating lifetime: Sovacool et al. (2014c) show construction 
times for generic categories thermal, hydro, nuclear, wind, and solar (see also Sovacool 
et al., 2014a, 2014b). NREL (Short et al., 2011) reports the scheduled lifetime for coal 
plants (65 years for units < 100 MW; 75 years for units > 100 MW), natural gas 
combined cycle  and oil-gas-steam units (both 55 years), and nuclear plants (60-80 
years). They also report construction times for a range of plant types, as shown in Table 
S14.  
 
 
8) CALCULATION OF THE COST OF ELECTRICITY BY STATE, YEAR, AND 
SCENARIO 
 
We calculate the average cost of electricity by state, year, and scenario (BAU or 100% 
WWS) as the sum of the product of the state’s fractional generation mix and the 
levelized cost of electricity (LCOE), by technology, as follows:  
 

  

ACS ,Y ,W = Sj ,S ,Y ,W ⋅
j
∑ Cj ,S ,Y ,W

Sj ,S ,Y ,BAU = Sj ,M:S∈M ,Y ,BAU

Cj ,S ,Y ,W = Cj ,US ,Y ,W ⋅RADJ , j ,S ,Y ,W
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RADJ , j ,S ,Y ,BAU = 1+C%AI+FOM , j ,US ,Y ,BAU ⋅

RIC−C , j ,M:S∈M ⋅RIC−A , j ,M:S∈M

RCF , j ,M:S∈M ,BAU

−1
⎛

⎝
⎜

⎞

⎠
⎟ +C%FUEL , j ,US ,Y ⋅ RFUEL , j ,M:S∈M ,Y −1( )

 

RADJ , j ,S ,Y ,100%WWS = 1+C%AI+FOM , j ,US ,Y ,100%WWS ⋅
RIC−C , j ,M:S∈M
RCF , j ,S ,Y ,100%WWS

−1
⎛

⎝
⎜

⎞

⎠
⎟

 
 
where 
 

  ACS ,Y ,W = the average levelized cost of electricity from all technologies in state S in year 
Y in scenario W ($/kWh) 

  Sj ,S ,Y ,W  =  the fraction of total generation provided by technology  j in state S  in year Y 
in scenario W (for 100% WWS scenario see discussion below; for BAU, see 
equation for parameter   Sj ,S ,Y ,BAU ) 

  Cj ,S ,Y ,W = the levelized cost of electricity from technology  j in state S year Y in scenario 
W ($/kWh)  

  Sj ,M:S∈M ,Y ,BAU  = the fraction of total electricity provided by technology j in EIA Electricity 
Market Module Region (EMMR) M (containing state S) in year Y in the BAU 
scenario (see discussion below) 

  Cj ,US ,Y ,W  = the average levelized cost of electricity from technology j in the United States 
in year Y  in scenario W ($/kWh) (Table S13) 

  RADJ , j ,S ,Y ,W = regional adjustment factor for technology j in state S in year Y and scenario 
W (we calculate adjustment factors for fossil-fuel-power plants, wind power, and 
solar power) 

  C%AI+FOM , j ,US ,Y ,W = the annualized+fixed O&M cost for technology j in the U.S. in year Y 
in scenario W, as a fraction of the total levelized cost (calculated from the 
intermediate national-average results) 

  C%FUEL , j ,US ,Y = the fuel cost for technology j in the U.S. in year Y, as a fraction of the total 
levelized cost (calculated from the intermediate national-average results) 

  RIC−C , j ,M:S∈M =  the ratio of initial costs for technology j in region M (containing state S) to 
the national-average costs assumed here, reflecting regional variability in 
construction costs (see the discussion below) 

  RIC−A , j ,M:S∈M = the ratio of initial costs for technology j in region M (containing state S) to 
the national-average costs assumed here, reflecting regional variability in 
ambient conditions such as temperature (see discussion below) 

  RFUEL , j ,M:S∈M ,Y = the ratio of fuel costs for technology j in region M (containing state S) in 
year Y to the national-average costs assumed here (EIA’s [2014c] AEO 
projections) 
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  RCF , j ,M:S∈M ,BAU = the ratio of the capacity factor for technology j in region M (containing 
state S) to the national-average factors estimated here, in the BAU (assumed to be 
1.0 for all technologies in the BAU scenario, for all years; see discussion below) 

  RADJ , j ,S ,Y ,100%WWS  = the adjustment factor for technology j in state S in year Y in the 100% 
WWS scenario to the national-average factors assumed here  

RCF , j ,S ,Y ,100%WWS = the ratio of the capacity factor for technology j in state S in year Y to the 
national-average factors estimated here, in the 100% WWS scenario (see 
discussion below) 

 
subscript j = technology types (Table S13)  
subscript W = 100% WWS or BAU scenario 
subscript M = Electricity Market Module Region (EIA 2014a, 2014e; there are no EMMs 

for Alaska and Hawaii, so as explained above we make separate assumptions for 
these two states) 

 
Fraction of generation by technology in the 100% WWS scenario (  Sj ,S ,Y ,100%WWS ) 
 
We constrain hydropower to existing capacity in each state except in the case of Alaska. 
We perform a detailed analysis of the potential generation from rooftop PV in each state 
(following the method of Jacobson et al., 2014) and then estimate the actual installed 
capacity for each state subject to a constraint that the installed capacity not exceed 93% 
(residential) or 95% (commercial) of the potential. (With our assumptions the installed 
capacity is about 60% of the potential for all 50 states.) We assume minor contributions 
from geothermal, wave, and tidal based on available resources in each state. For 
onshore wind, offshore wind, and solar thermal, we analyze the solar and wind 
resources available for each state and develop appropriate assumptions. Finally, we 
assume that utility solar PV provides the difference between demand and the supply 
from all other sources. We assume that 65% of utility PV is crystalline single-axis 
tracking technology, and 35% is thin-film single-axis tracking technology. 
 
We also maintain an estimate of the LCOE in a 100% WWS scenario at base-year cost 
levels. For this base-year scenario we assume the same 100% WWS generation mix as in 
the target year.  
 
Fraction of generation by technology and EMM in the BAU scenario (  Sj ,M:S∈M ,Y ,BAU ) 
 
As indicated above, in order to calculate the average LCOE for each state in the BAU we 
need to know   Sj ,M:S∈M ,Y ,BAU , the fraction of total electricity provided by technology j in 
EIA Electricity Market Module Region (EMMR) M (containing state S) in year Y in the 
BAU scenario. Our technology categories j are shown in Table S13. Now, the EIA does 
not project exactly what we want (  Sj ,M:S∈M ,Y ,BAU ), but it does project something close 

(EIA, 2014c), which we will designate   Sf ,M:S∈M ,Y[2040],BAU , where the subscript f is the type 
of generator fuel (see below) and the subscript Y[2040] means that their projection 
extends only to 2040 (we go to 2075). We therefore have to extend the EIA’s projections 
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to the year 2075, and map their fuel (f)-based projections to our technology-type (j)-
based projections.  
 
Extending the EIA’s projections. We extend the EIA projections to 2075 using a ten-year 
moving trend line.  
 
Mapping the EIA’s fuel-based projections to our technology-type projections. The EIA 
(2014c) projects electricity generation by EMM and fuel type f, where the fuel types 
are Coal, Petroleum, Natural Gas, Nuclear, Pumped Storage, Conventional 
Hydropower, Geothermal, Biogenic Municipal Waste, Wood and Other Biomass, Solar 
Thermal, Solar Photovoltaic utility, Wind, Offshore Wind, Solar Photovoltaic end-use, 
and Distributed Generation. Our renewable technology categories are similar, but our 
fossil-fuel categories are more disaggregated. Fortunately, the EIA (2014f) also projects 
electricity generation for the whole U.S. (but not by EMM) by type of fossil-fuel 
technology, and we can use these national projections to break out into more specific 
technology types the EIA’s projection of coal, natural gas, and petroleum generation by 
EMM.  
 
Table S15 shows how we map the EIA’s (2014c, 2014f) projections into our technology 
types. This mapping is straightforward except in the case of petroleum and natural gas 
fuels, because the EIA’s (2014f) projections of generation by technology include several 
technology categories (e.g., steam turbine) that can use either petroleum or natural gas. 
Thus, in these cases, we must further disaggregate the EIA’s (2014f) projections to be by 
fuel type as well as technology type. To do this, we extract and aggregate plant-level 
EIA data on generation by oil and gas, by plant type, for the lower 48 states, Alaska, 
Hawaii, and the whole U.S. (Table S16). We use the results of Table 16, for the lower 48 
states, to distribute the EIA’s (2014f) projections by technology type to our technology- 
and fuel-specific categories. (We use results for the lower 48 states because the EIA’s 
[2014f] projections are for the lower 48 states only; we and the EIA treat Alaska and 
Hawaii separately.)  
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Table S15. Mapping EIA fuel-use categories to our technology types.  
 

EIA (2014c) fuel category 
2050 

weight Our technology category 
Coal 99.1% Advanced pulverized coal 

Distribution based on EIA 
(2014f). 

0.0% Advanced pulverized coal w/CC 
0.5% IGCC coal 
0.4% IGCC coal w/CC 

Petroleum 
 

Diesel generator (for steam turbine) 
Natural Gas 5.3% Gas combustion turbine 

Distribution based on EIA 
(2014f) and Table S16 analysis; 
see discussion below. 

34.0% Combined cycle conventional 
60.4% Combined cycle advanced 
0.2% Combined cycle advanced w/CC 
0.0% Fuel cell (using natural gas) 
0.0% Microturbine (using natural gas) 

Nuclear 100.0% Nuclear, APWR 
EIA (2014g) assumes no storage 0.0% Nuclear, SMR 
Distributed generation  

 
Distributed generation (using natural gas) 

Biogenic Municipal Waste 
 

Municipal solid waste 
Wood and Other Biomass 

 
Biomass direct 

Geothermal 
 

Geothermal 
Pumped Storage, 
Conventional hydropower 

 
Hydropower 

Wind 
 

On-shore wind 
Offshore Wind 

 
Off-shore wind 

Solar Thermal 100.0% CSP no storage 
EIA does not consider storage. 0.0% CSP with storage 
Solar Photovoltaic utility 65.0% PV utility crystalline tracking 
EIA’s AEO includes only single-
axis-tracking PV of unspecified 
technology (EIA, 2014g, p. 66; 
EIA, 2014a, p. 178) 

0.0% PV utility crystalline fixed 
35.0% PV utility thin-film tracking 

0.0% PV utility thin-film fixed 
 Solar Photovoltaic end-use 35.0% PV commercial rooftop 
 Our assumption. 65.0% PV residential rooftop 
No EIA projections. 

 
Wave power 

No EIA projections. 
 

Tidal power 
No EIA projections. 

 
Solar thermal (water or glycol solution) 

 
Note: Our category “gas combustion turbine” includes the “steam turbine” and “gas turbine” categories 
of Table S16. 
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Table S16. Generation from oil and natural gas, by plant type, all generators (electric 
utilities and co-generators), U. S., 2013 (MWh) 
 
Plant type Lower 48 Alaska Hawaii United states 

 Oil NG  Oil  NG  Oil NG  Oil NG  

ICE 155,853 10,450,007 403,883 60,945 347,303 0 907,039 10,510,952 

Steam turbine 4,452,615 92,181,479 3,515 5,000 4,257,719 0 8,713,848 92,186,480 
Combined 
cycle 635,860 951,534,387 364,625 2,774,980 2,474,139 0 3,474,624 954,309,367 

Gas turbine 669,432 94,582,808 53,120 625,621 172,112 41,330 894,665 95,249,759 

Total 5,913,760 1,148,748,681 825,143 3,466,547 7,251,273 41,330 13,990,176 1,152,256,557 

 
ICE = internal combustion engine; NG = natural gas.  
 
Source: Our analysis of EIA plant-level database: U.S. Department of Energy, The Energy Information 
Administration (EIA), EIA-923 Monthly Generation and Fuel Consumption Time Series File, 2013 Final 
Release, EIA-923 and EIA-860 Reports (http://www.eia.gov/electricity/data/eia923/).  
 
 
Alaska and Hawaii. The EIA’s EMM regions do not cover Alaska and Hawaii. For these 
states we assume the actual generation shares in 2013 
(http://www.eia.gov/electricity/data/state/) remain constant over time. (This in 
essence is what the EIA does in its AEO projections [Jones, 2015].) 
 
Note that our method properly and consistently accounts for the effects on CO2 
emissions and generation costs of the use of carbon-capture and sequestration (CCS): we 
use the EIA’s projections of generation with CCS, the EIA’s projections of the associated 
economy-wide CO2 emissions from fossil-fuel use, and the EIA’s assumptions on the 
cost of generation technology with CCS relative to the cost without.  
 
Regional variation in initial capital costs 
 
The EIA’s AEO accounts for two sources of regional variation in the capital cost of 
electricity generation technologies: variation in construction costs (primarily labor 
costs), and variations in ambient conditions, such as temperatures, that affect the power 
output of the turbine and hence the $/kW capital cost of the technology. (For example, 
air temperature influences the air pressure into the turbines, which in turn determines 
the turbine power output.) We account for the same effects here, using the EIA’s 
multipliers.  
 
The EIA commissioned a consultant to estimate variability in construction costs and 
ambient conditions for a representative city (or cities) in all 50 states in the U. S. (EIA, 
2013). With these estimates, the EIA developed its own estimates of   RIC−C , j ,M:S∈M  (the 
capital cost in each region, relative to the national-average cost, due to the construction 
cost in the region relative to the national average) and   RIC−A , j ,M:S∈M  (the capital cost in 
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each region, relative to the national-average cost, due to the ambient conditions in the 
region relative to the national average) (EIA, 2014h; see also Table 4 of EIA, 2013, for a 
summary of the product of   RIC−C , j ,M:S∈M  and  RIC−A , j ,M:S∈M  by EMM). For the 22 EMMs in 
the lower 48 states, we use the EIA’s (2014h) estimates. For Alaska and Hawaii we use 
the estimates developed in the EIA’s consultant report (EIA, 2013), the average of 
Anchorage and Fairbanks for Alaska, and Honolulu for Hawaii.  
 
The EIA does not apply these regional capital-cost adjustments to geothermal and 
hydropower. Instead, the EIA estimates geothermal and hydropower capital costs and 
capacity by EMM region including in this case Alaska and Hawaii (EIA, 2014i). We use 
these to calculate capacity-weighted average capital costs in each EMM region relative 
to the capacity-weighted national-average capital cost. If the EIA (2014h) did not 
estimate  capital cost or capacity for a region, we assume a relative factor of 1.0., except 
in the case of geothermal for Hawaii, where we assume an adjustment factor based on 
the generally higher construction costs in Hawaii.  
 
In the EIA’s analysis the regional multipliers apply to “base-case” capital-cost estimates, 
which pertain to a “generic” facility built in an unspecified, “typical” location (EIA, 
2014a, p. 96; EIA, 2013, p. 5, p.2-6). Here we apply the same regional multipliers to our 
own estimates of generic, nationally typical capital costs. On the reasonable assumption 
that our generic capital-cost estimates are conceptually similar to the EIA’s generic 
“base-case” estimates, our use of the EIA’s regional multipliers is valid.  
 
The relative capacity factor for technology j in region M in the BAU scenario. 
 
In this analysis we ignore regional variations in capacity factors in the BAU and instead 
assume that capacity factors in all regions for all technologies are equal to the national-
average capacity factor for the technology as projected by the EIA. (However, as 
discussed below, we do adjust the EIA’s projected BAU capacity factors for wind power 
to account for the reduction in wind speed due to increasing numbers of wind turbines.) 
If we were to estimate region-specific capacity factors and then weight these by regional 
generation, the resultant total U.S. average costs would be the same, but region-by-
region costs would be slightly different from what we have estimated here.  
 
The relative capacity factor for technology j in state S in year Y in the 100% WWS 
scenario.  
 
We estimate capacity factors for onshore wind and all solar technologies, for each state, 
in target-year Y, relative to the estimated or assumed national-average capacity factor in 
Table S13. For all other technologies in the 100% WWS scenario (e.g., hydro and 
offshore wind), we assume that each state’s capacity factor is the same as the national 
average factor, meaning that the adjustment term RCF , j ,S ,Y ,100%WWS   is 1.0.  
 
Onshore wind. For onshore wind, we first calculate the capacity factor for each state 
and for the nation as a whole in 2013 based on reported wind generation by state from 
the EIA’s Electric Power Monthly (http://www.eia.gov/electricity/monthly/) and 
installed wind capacity by state in 2013 from the DOE 
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(http://apps2.eere.energy.gov/wind/windexchange/wind_installed_capacity.asp). 
For states with either zero generation or capacity, we assume the regional-average 
capacity factor. We then calculate the ratio of each state’s 2013 capacity factor to the 
national average capacity factor (calculated from the same state-level data) in the base 
year (2013 in the present analysis, but represented generally by the parameter YCF ); we 
designate this ratio RCF ,wind ,S ,YCF . The overall target-year adjustment factor 
RCF ,wind ,S ,Y ,100%WWS  is then the product of   RCF ,wind ,S ,YCF

, a multiplier that accounts for changes 
in resource availability due to the use of more or less windy sites than in the base year 
(subscript RA), and a multiplier that accounts for the reduction in wind speed as the 
number of turbines extracting energy from the wind increases (subscript WX):  
 
RCF ,wind ,S ,Y ,100%WWS = RCF ,wind ,S ,2013 ⋅ϕRA ,wind ,S ,Y ,100%WWS ⋅ϕWX ,wind ,S ,Y ,100%WWS

ϕRA ,wind ,S ,Y ,100%WWS =ϕRA ,wind ,S ,Limit + 1−ϕRA ,wind ,S ,Limit( ) ⋅ eγ RA⋅ Y−YCF( )

ϕWX ,wind ,S ,Y ,100%WWS =ϕWX ,wind ,S ,Limit + 1−ϕWX ,wind ,S ,Limit( ) ⋅ eγWX ⋅ Y−YCF( )

 

 
where 
 
ϕ...Y = the ratio of the capacity factor in year Y to the capacity factor in year YCF on 

account of changes in the availability in wind resources (subscript RA) or wind-
energy extraction (subscript WX) 

  ϕRA ,wind ,S ,Limit = the ratio of the capacity factor in the long-run limit to the capacity factor in 
year YCF on account of changes in the availability in wind resources (discussed 
below) 

ϕWX ,wind ,S ,Limit= the ratio of the capacity factor in the long-run limit to the capacity factor 
in year YCF on account of increasing wind-energy extraction (discussed below) 

γ = the rate of approach of the long-run limiting reduction factor due to resource 
availability or competition among turbines (discussed below) 

Y = the target year of the analysis 
YCF  = the year of the baseline capacity-factor data (2013 in the present analysis) 
 
As discussed in the section “Capacity factor: resource availability long-run limit w.r.t. 
base (100% WWS scenario only) (<100%),” in the U. S. most of the high-wind sites have 
yet to be developed. However, in order to get a more quantitative sense of the long-run 
availability of wind resources by state, we examine NREL’s map of wind power classes 
throughout the U.S., with appropriate land-use restrictions applied (Figure S3). Based 
on this examination, and considering that in Jacobson et al. (2015) “wind turbines are 
placed near each of 42,000 existing U.S. turbines..,” we assume that   ϕRA ,wind ,S ,Limit  is 96% 
to 100%, with higher values for the states with the best wind resources, and that this 
limit is approached at a rate of 4%/year.  
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As mentioned above, another factor affects the amount of energy available from wind 
resources in a target year with respect to the amount available in the base year. As the 
number of wind farms increases, the extraction of kinetic energy from the wind by the 
turbines decreases the average wind speeds, which in turn reduces the potential power 
output from the wind farms (Jacobson and Archer, 2012).  
 
The magnitude of this reduction depends on several factors, including the size, location, 
and spacing of wind farms; the height of the turbines; and the extent to which the 
increased dissipation of kinetic energy as heat eventually increases the available 
potential energy of the atmosphere (Jacobson and Archer, 2012). Results from Jacobson 
et al. (2015) indicate that the reduction in wind speeds due to large-scale deployment of 
wind farms, on the scale assumed here, can reduce the average capacity factor by about 
7%. At higher levels of deployment – at what might constitute our long-run limit – the 
reduction presumably would be slightly higher. On the other hand, the base-year 
capacity factors we start with already reflect the actual performance of existing wind 
farms, and therefore account for the real-world reduction in wind speed due to use of 
wind power at the relatively low levels of penetration in the base year.  
 
With these considerations, we assume that at highest levels of deployment the 
reduction in wind speeds due to extraction of kinetic energy by turbines would 
(further) reduce the capacity factor for onshore wind by 5%  to 7%; i.e., that   ϕWX ,wind ,S ,Limit  
is 93% to 95%, with higher values for the states with the best wind resources.  
 
Offshore wind. For offshore wind we assume smaller effects because these farms 
generally are spaced relatively far from one-another and from onshore farms; thus, we 
assume a 4% reduction in the low-cost case and a 6% reduction in the high-cost case.  
 
Note that, as discussed later, this effect applies also to wind power in the BAU scenario.  
 
Solar power.  For solar power, the adjustment factor   RCF , j ,S ,Y ,100%WWS  is the ratio of the 
average insolation in year Y for technology j  in state S to the generation-weighted 
national average insolation for technology j in the base year YCF . The average insolation 
in year Y is equal to the average insolation in year YCF  multiplied by an adjustment 
factor that accounts for changes in siting opportunities between the base year YCF  and 
the target year Y. The average insolation in the base year YCF  is the product of the three 
factors: i) the average insolation in a representative city in the state; ii) an adjustment for 
the general effect of the size of the state on the opportunity for siting in places with 
insolation different than in the representative city; and iii) an adjustment that accounts 
for the specific effect of areas in the state, such as deserts, with especially good 
insolation.  
 
Formally for the case of CSP technology,  
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RCF ,CSP ,S ,Y ,100%WWS =
UCSP ,S ,Y

UCSP ,US ,YCF

UCSP ,S ,Y =UCSP ,S ,YCF
⋅AFLOC−CSP ,S ,Y

AFLOC−CSP ,S ,Y = AFLOC−CSP ,S ,YCF→Limit + 1−AFLOC−CSP ,S ,YCF→Limit( ) ⋅ eγU−CSP⋅ Y−YCF( )

UCSP ,S ,YCF
=UCity−S ⋅AFAREA ,S ⋅AFLOC−CSP ,S ,YCF

AFAREA ,S =max 1,
AS

AGEOMEAN−US

⎛
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UCSP ,US ,YCF
= 1
GCSP ,US ,YCF

⋅ UCSP ,S ,YCF
⋅GCSP ,S ,YCF

S
∑

 

 
 
where  
 

  RCF ,CSP ,S ,Y ,100%WWS =  the capacity factor for technology CSP in state S in year Y in the 100% 
WWS scenario relative to the national-average capacity factor for CSP in year YCF  

UCSP  = average insolation at CSP locations in (kWh/m2/d) 
UCSP ,US ,YCF

 = generation weighed average insolation at CSP locations in the U.S. in the 
base year 

AFLOC−CSP ,S ,Y  = The ratio of average insolation at the CSP locations in state S in year Y to 
the average insolation at CSP locations in state S in year YCF   

AFLOC−CSP ,S ,YCF→Limit  = the limit of AFLOC−CSP ,S  in the long run (see discussion below) 
γ U−CSP  = the rate of approach of the long-run limit in the case of CSP (see discussion 

below) 
UCity−S  = average insolation in a representative city in state S (kWh/m2/d) 

(http://stalix.com/isolation.pdf) 
AFAREA ,S  = adjustment factor accounting for the fact that the larger the state, the more 

likely there are to be sites for utility PV and CSP plants that have better 
insolation than for the representative city 

AFLOC−CSP ,S ,YCF  = the ratio of average insolation at the location of CSP plants to the 
average insolation for the representative city, in the base year (see discussion 
below) 
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AS  = land area of state S (U. S. Census) 
AGEOMEAN−US  = the geometric mean state area in the U.S. 
a = exponent (we specify this so that AFAREA ,S  is less than 1.10 for all states except 

Alaska) 
GCSP ,S ,YCF  = generation from CSP in state S in year YCF (sources for all WWS technologies: 

http://www.eia.gov/electricity/data/browser; Interstate Renewable Energy 
Council, 2014) 

 
For states with PV and CSP plants in the base year, our assumptions for AFLOC−CSP ,S ,YCF  
are based on our assessment of the insolation at their actual locations in 2012 with 
respect to the insolation for the representative city (Figure S2). Our estimates for 
AFLOC−CSP ,S ,YCF→Limit also are based on our assessment of the information shown in Figure 
S2, with consideration of two countervailing trends over time, i) the possibility of 
finding better (sunnier) locations within each state for certain types of technology, but 
also ii) the possibility of using up the sunniest spots first.  
 
The relative capacity factor for WWS technologies in the BAU scenario.  
 
We have assumed that the   RCF , j ,M:S∈M ,BAU  is 1.00 for all technologies, including WWS 
technologies, in the BAU scenario. Why do we make state-specific adjustments for the 
capacity factor for WWS technologies in the 100% WWS scenario but do not make 
EMM-region-specific adjustments in the BAU scenario? In general, we estimate state-
specific parameters, relative to national-average parameters, so that i) we can report 
state-level costs, and ii) we can estimate a national-average LCOE based on a different 
set of state weights than those used to calculate the state-specific relative adjustment 
parameters. As discussed above, in the 100% WWS scenario the national-average 
capacity factors we estimate are based implicitly upon state generation shares that are 
different than the shares that we actually assume; thus, in the 100% WWS scenario, we 
need to know individual state capacity factors in order to estimate a national-average 
LCOE consistent with the state generation mix we actually assume. However, in the 
BAU all national-average capacity factors are taken from the EIA’s AEO, and 
presumably the EIA’s national average estimate is built from EMM-level capacity 
factors. If so, then in the BAU, there is no need to estimate the relative regional capacity 
factors for WWS technologies, at least for the purpose of calculating the national-
average LCOE. (The use of relative regional capacity factors would change the reported 
state-level costs ever so slightly, but this difference is minor.) 
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Figure S2. Average annual solar insolation (kWh/m2/day), and location of PV and CSP plants, U.S. (http://maps.nrel.gov/prospector). 
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Figure S3. Wind power classes in the, U.S. (https://mapsbeta.nrel.gov/wind-prospector/).
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Note that this reasoning also means that, for the purpose of accurately estimating 
national average costs, we did not have to estimate regional relative fuel costs, 

  RFUEL , j ,M:S∈M ,Y , because presently we use the EIA’s AEO projections to estimate both 
relative regional costs and the national average cost used in the overall national LCOE 
calculation. Nonetheless, we have incorporated   RFUEL , j ,M:S∈M ,Y  into our model to 
accurately report state-specific costs and to allow for the possibility, in future analyses, 
of calculating national-average costs with a different set of state-specific fuel-use 
weights than those used to calculate s  RFUEL , j ,M:S∈M ,Y .  
However, even though we don’t estimate region-specific capacity factor adjustments in 
the BAU, we do estimate a national-average adjustment to the wind capacity factor in 
the BAU in the TY to account for the effect, discussed in the previous section, of 
expanding the size of wind farms. The EIA’s (2014c) reference-case projections of the 
capacity factor for wind power – the starting point of our estimates of energy use in the 
BAU – do not account for this effect of reduction in kinetic energy on the capacity factor 
for wind power, so for our BAU scenario we must adjust the EIA estimates accordingly. 
We use the method described for the 100% WWS scenario, except that we assume that 
in the BAU the state shares of onshore wind generation approach the long-run 
saturation limit at 20% of the rate in the 100% WWS scenario, and that each state’s share 
of total national wind generation is equal to its share in the base year.   
 
Note on the cost of installed WWS capacity by state  
 
We use the same state/national capital-cost multipliers and capacity-factor multipliers 
to calculate the total installed capacity and the total cost of installed capacity by state. 
The total cost of installed capacity by state is used in the calculation of the amount of 
time it takes for energy-cost savings, air-pollution benefits, and climate-change benefits 
to payback the initial installed capacity cost.  
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