Supplementary Information

Encapsulation of Organic Active Material in Carbon Nanotubes for Application to High-Electrochemical-Performance Sodium Batteries

Jae-Kwang Kim,a,* Yongli Kimb, Seung-Young Parkb, Hyunhyub Kob and Youngsik Kimber

a Department of Solar & Energy Engineering, Cheongju University, Cheongju, Chungbuk 360-764, Republic of Korea. E-mail: jaekwang@cju.ac.kr
b School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 689-798 Ulsan, Republic of Korea. E-mail: ykim@unist.ac.kr
E-mail: jaekwang@cju.ac.kr (J. Kim), ykim@unist.ac.kr (Y. Kim)
Fig. S1. Schematic diagram for the preparation of PTMA-impregnated CNT.
Fig. S2. TGA curve of the PTMA-impregnated CNT.
Fig. S3. BET surface area of CNT and PTMA-impregnated CNT.
Fig. S4. Schematic illustration of PTMA-CNT composite and PTMA-impregnated CNT electrodes.
Fig. S5. TGA curves of the bare PTMA and PTMA-impregnated CNT.
Fig. S6. Electrochemical reaction mechanism of PTMA at initial charge-discharge process.
Fig. S7. Ex-situ XPS of Na1s (b) and N1s in PTMA-impregnated CNT electrodes.
Fig. S8. Cyclic voltammograms (CV) of PTMA-impregnated CNT sodium cell at a scan rate of 0.2 mV s$^{-1}$.

Na//PTMA-impregnated CNT cell

Scan rate: 0.2 mV/s

Cycle No.: 2nd

Current (mA)

Voltage (V)
Fig. S9. Preparation of PTMA by the radical polymerization method.
Fig. S10. Charge-discharge curves of Na/CNT cell at same current density with PTMA-impregnated CNT cell.
Fig. S11. Charge-discharge curves and cycle performance of the PTMA-impregnated CNT electrode on lithium battery at room temperature.