Electronic Supplementary Information

Efficient band structure tuning, charge separation, visible-light response in ZrS$_2$-based van der Waals heterostructures†

Xirui Zhang,‡a Zhaoshun Meng,‡a Dewei Rao, bc Yunhui Wang, a Qi Shi, a Yuzhen Liu, a Haiping Wu, a Kaiming Deng, ** Hongyang Liu* b and Ruifeng Lu* a

‡Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, P R China

bShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P R China

cInstitute for Advanced Materials, Jiangsu University, Zhenjiang 212013, P R China

Fig. S1 Charge distribution of pure ZrS$_2$ monolayer. The charge densities of the VB (blue) and CB (red) is plotted with an isovalue of 0.02 e/Å3.

Fig. S2 Charge density differences of hybrid h-BN/ZrS$_2$ heterostructure compared with the isolated ZrS$_2$ and graphene monolayers. Pink, blue, yellow and dark green balls represent B, N, S and Zr atoms, respectively. Blue and red isosurfaces represent, respectively, charge accumulation and depletion in the space. The isovalue chosen to plot the isosurfaces is 0.0001 e/Å3.

This journal is © The Royal Society of Chemistry 2015
Fig. S3 Charge density differences of hybrid g-C₃N₄/ZrS₂ heterostructure compared with the isolated ZrS₂ and graphene monolayers. Grey, blue, yellow and dark green balls represent C, N, S and Zr atoms, respectively. Blue and red isosurfaces represent, respectively, charge accumulation and depletion in the space. The isovalue chosen to plot the isosurfaces is 0.0001 e/Å³.

Fig. S4 Charge density differences of hybrid PG/ZrS₂ heterostructure compared with the isolated ZrS₂ and graphene monolayers. Grey, white, yellow and dark green balls represent C, H, S and Zr atoms, respectively. Red and blue isosurfaces represent, respectively, charge accumulation and depletion in the space. The isovalue chosen to plot the isosurfaces is 0.0001 e/Å³.
Fig. S5 Fully relaxed structures. (a) Side view and top view of graphene/ZrS$_2$ heterostructure. (b) Side view and top view of h-BN/ZrS$_2$ heterostructure. (c) Side view and top view of g-C$_3$N$_4$/ZrS$_2$ heterostructure. (d) Side view and top view of PG/ZrS$_2$ heterostructure.