The growth of CH$_3$NH$_3$PbI$_3$ thin film by simplified close space sublimation for efficient and large dimensional perovskite solar cells

Qiang Guo1, Cong Li1, Wenyuan Qiao1, Shuang Ma1, Fuzhi Wang1, Bing Zhang1, Linhua Hu2, Songyuan Dai1*, Zhan’ao Tan1*

1 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing 102206, China.

2 Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China

Corresponding Authors

*E-mail: tanzhanao@ncepu.edu.cn (Z. A. Tan); sydai@ncepu.edu.cn (S. Y. Dai)

Figure S1. X-ray diffraction (XRD) pattern of perovskite films deposited on the FTO/PEDOT:PSS substrate (annealed for 2.5 h) with the sublimation distance of 0.4 and 0.6 mm, respectively.
Figure S2. AFM (5µm×5µm) and top-view SEM (inset image with scale bar of 1µm) images of perovskite films annealed for 2.5 h with the sublimation distance of 0.4 (a, c) and 0.6 mm (b, d), respectively.
Figure S3. Current-voltage (J-V) characteristic curve of the champion cell (4 mm2).

Figure S4. Current-voltage (J-V) characteristic curves of perovskite devices with the sublimation space of 0.4 and 0.6 mm.
Figure S5. Thickness of PEDOT:PSS layer, PbI\(_2\) film and CH\(_3\)NH\(_3\)PbI\(_3\) film deposited on PEDOT:PSS substrate measured by Dektak XT profilometer.
Figure S6. Current-voltage ($J-V$) characteristic curves of perovskite device (100 mm2) fabricated with FTO glass with sheet resistance of 7 Ω/sq.
Figure S7. (a) Current-voltage ($J-V$) characteristic curves and (b) External quantum efficiency (EQE) curve of perovskite devices with the CH$_3$NH$_3$PbI$_3$ film grown in standard atmosphere.