Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2015

SUPPORTING INFORMATION TO:

Silica Nanoparticle-Generated ROS as a Predictor of Cellular Toxicity: Mechanistic Insights and Safety by Design

Sean E. Lehman¹, Angie S. Morris^{1,2}, Paul S. Mueller¹, Aliasger K. Salem², Vicki H. Grassian¹ Sarah C. Larsen^{1*}

Cell Viability Data for 4 and 24 Hours in RAW 264.7 Macrophage Cell Line

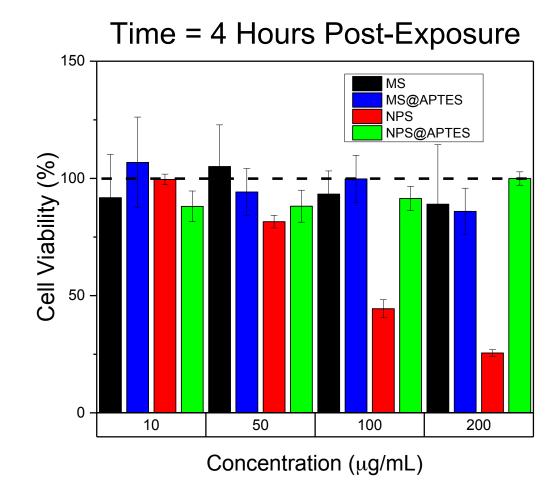


Figure S1. Cell viability data in RAW 264.7 macrophage cell line at 4 hours post-exposure.

¹Department of Chemistry, University of Iowa, Iowa City, IA 52242

²Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242

Time = 24 Hours Post-Exposure

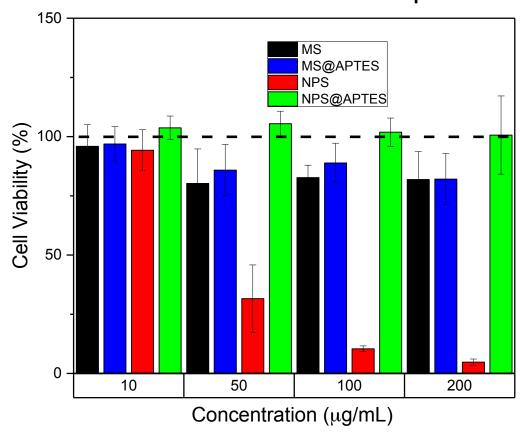
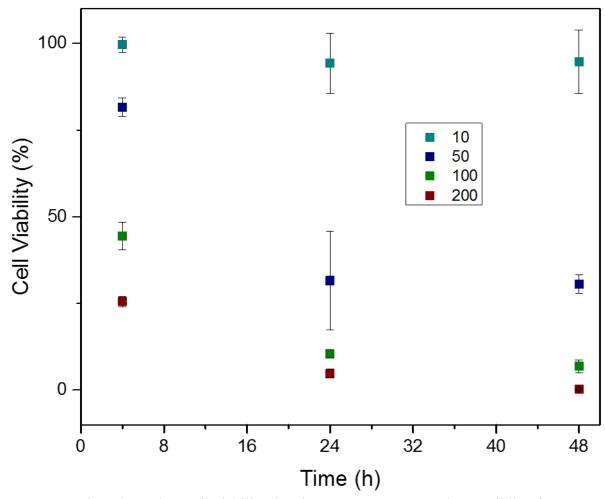
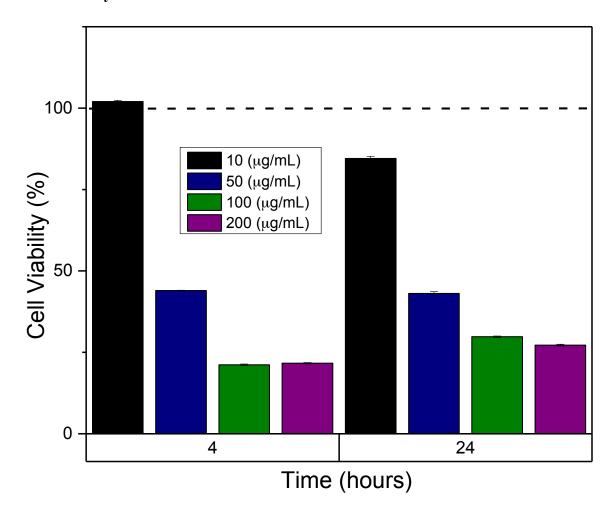




Figure S2. Cell viability in RAW 264.7 macrophage cell line at 24 hours post-exposure.

Cell Viability Time-Dependence of NPS Material

Figure S3. Time-dependent cell viability data in RAW 264.7 macrophage cell line for NPS material as a function of time and concentration (in $\mu g/mL$).

Figure S4. Cell viability data for Min-U-Sil in RAW 264.7 macrophage cell line as a function of time and concentration (μ g/mL).

EPR Data Tabulated Values

Sample	Radical Type	Radical Concentration [Absolute] (nM)	Radical Production (pmol/m²)
MS	OH*	105.52	1.91
MS@APTES	OH*	203.1	5.81
MS@APTES	NO*	104.2	2.98
NPS	OH*	729.8	221.2
NPS@APTES	OH*	284.3	135.4
NPS@APTES	NO*	69.4	33.0
Min-U-Sil	OH*	72.4	188.7

Table ST1. Tabulated data for the EPR spectra, which are displayed graphically in the main text.

EPR Spectrum of Min-U-Sil in Water

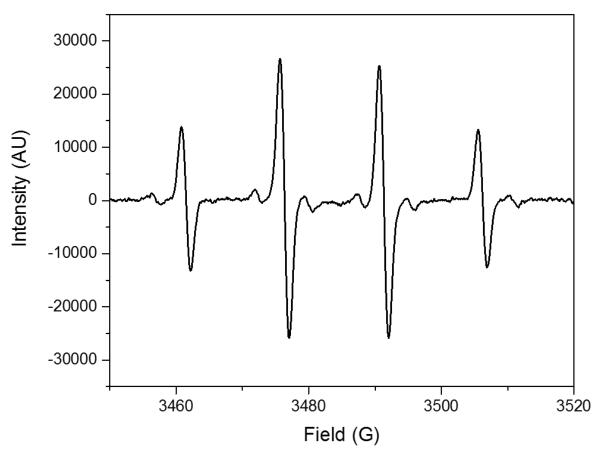
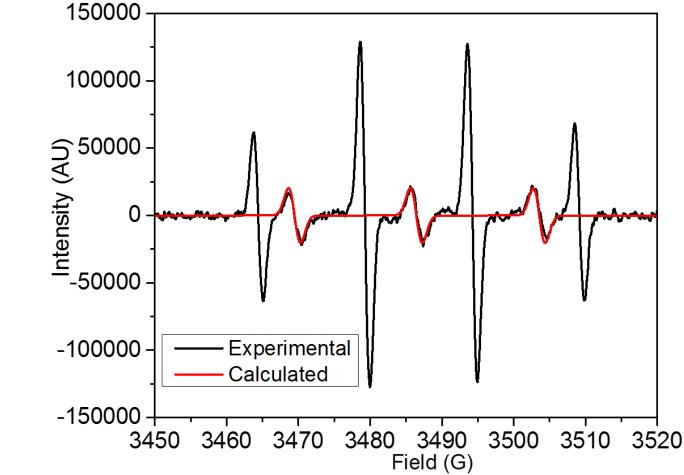



Figure S5. EPR spectrum of Min-U-Sil in water with added peroxide.

FigureS6. Comparison of experimental MS@APTES EPR spectrum with a calculated EPR spectrum for the proposed aminoxyl radical calculated using EasySpin (garlic). The spectral intensity of the calculated spectrum has been matched to that of the experimental spectrum.

In Vivo Radical Concentration Calculation

$$\begin{split} \frac{Exposed\ Particle\ Area\ Per\ Cell\ (Mesoporous\ Silica, Bare) =}{15,000\ particles} & \frac{g}{1.90\ x\ 10^{16}\ particles} * \frac{1102\ m^2}{g} = \frac{1.66\ x\ 10^{-21}m^2}{cell} \\ [OH^*] & = \frac{1.91\ pmol}{m^2} * \frac{1.66\ x\ 10^{-21}m^2}{cell} * \frac{cell}{2\ x\ 10^{-12}\ L} = 8.31\ x\ 10^{-10}\ (M) = 0.83\ (nM) \\ & \frac{Experimental\ [H_2O_2]}{In\ Vivo\ [H_2O_2]} = \frac{0.200\ M}{1.0\ x\ 10^{-7}\ M} = 2\ x\ 10^6 \\ & \text{Corrected}\ [OH^*] = \frac{8.31\ x\ 10^{-10}\ (M)}{2\ x\ 10^6} = 4.2\ x\ 10^{-16}\ (M) \end{split}$$