Supplementary information for

Water-compatible surface molecularly imprinted polymers with synergy of bi-functional monomers for enhanced selective adsorption of bisphenol A from aqueous solution

Feifei Duan,a,b,c Chaoqiu Chen,b Xiaofeng Zhao,a,c Yongzhen Yang,a,d Xuguang Liu,a,c* and Yong Qinb,b*

aKey Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China.
bState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
cCollege of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
dResearch Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
Synthesis of porous graphene oxides (PGO). Graphene oxide was synthesized via Staudenmaier method. PGO was prepared by the method of Zhao’s group.\(^1\) Briefly, hard templates, silica nanospheres were synthesized by Stober method: ammonia solution (3 mL, 25%), distilled water (1 mL) and tetraethyl orthosilicate (2.3 mL) were mixed into 60 mL of ethanol. The mixed solution was reacted under vigorous stirring for 6 h at 25 °C. Then the solution was dialyzed for 48 h and then diluted to 75 mL with water. F108 (0.6 g), 1, 3, 5-trimethylbenzene (0.875 mL) and concentrated HCl (15 mL, 37%) were added into the diluted suspension and the reaction was continued for 48 h. Then ammonia solution was used to neutralize the suspension. Graphene oxide suspension (600 mL, 1.0 mg/mL) was mixed into the neutralized solution and the whole mixture was stirred for 12 h at room temperature. Then, the produced solid precipitate was collected by centrifugation at 4500 r.min\(^{-1}\) and dried at 50 °C. The dried precipitate was calcined at 400 °C for 1 h under argon atmosphere. The sample was then washed by HF solution (5 wt%) three times to remove the silica template and PGO was obtained.

Adsorption capacity. The adsorption capacity of adsorbent (mg/g) at equilibrium \(q_e\) was calculated according to the following equation:

\[
q_e = \frac{C_0 - C_e}{m}V
\]
(1)
where C_0 and C_e present the initial and equilibrium concentrations of BPA in the mixture solution (mg/L), respectively, V is the volume of solution (L), and m is the mass of adsorbent used (g).

Characterization. The morphologies of the parent PGO and functionalized PGO were characterized by transmission electron microscopy (TEM, JEOL-2100F). X-Ray energy dispersive spectroscopy (EDS) was used to obtain information about the chemical composition of the samples. Fourier-transform IR (FTIR) spectra were recorded on a Japan MODEL-8400s FTIR spectrometer using KBr pellet. Thermogravimetric (TG) analysis was carried out on a Netzsch TG 209 F3 instrument at a heating rate of 10°C/min under air atmosphere.

Table S1 The detailed monomer doses of MIPs with different monomer ratio (molar ratio).

<table>
<thead>
<tr>
<th>AMPS:St</th>
<th>5:0</th>
<th>4:1</th>
<th>3:2</th>
<th>2.5:2.5</th>
<th>2:3</th>
<th>1:4</th>
<th>0:5</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPS (g)</td>
<td>0.8320</td>
<td>0.6656</td>
<td>0.4992</td>
<td>0.4160</td>
<td>0.3328</td>
<td>0.1664</td>
<td>-</td>
</tr>
<tr>
<td>St (μL)</td>
<td>-</td>
<td>92.0</td>
<td>184.0</td>
<td>230.0</td>
<td>276.0</td>
<td>368.0</td>
<td>460.0</td>
</tr>
</tbody>
</table>
Fig. S1 Effect of contact time on the adsorption of MIPs with different molar ratio of AMPS to St (20 mg of each MIPs in 40 mL of 50 mg/L BPA solution at 293 K).

Fig. S2 TG curves of (a) PGO, (b) silanized PGO, (c) AMPS/MIPs, (d) St/MIPs and (e) AMPS-St/MIPs.

Adsorption kinetics studies of AMPS-St/MIPs

Two conventional kinetics models (pseudo-first-order and pseudo-second-order) were applied to analyze the experimental data.

The pseudo-first-order model can be described as:

\[
\ln(q_e - q_t) = \ln q_e - k_1 t
\]

(2)

where \(k_1 \) is the rate constant of the pseudo-first-order model of adsorption (1/min), \(q_e \) and \(q_t \) (mg/g) are the adsorbed BPA amounts on AMPS-St/MIPs at equilibrium and at
various times t, respectively. The values of q_e and k_1 can be determined from the intercept and slope of the linear plot of $\ln(q_e - q_t)$ versus t.

The pseudo-second-order model comprises all the steps of adsorption including external film diffusion, adsorption, and internal particle diffusion, which is described as:

$$\frac{t}{q_t} = \frac{1}{k_2q_e^2} + \frac{t}{q_e}$$

(3)

where q_e and q_t are defined as in the above pseudo-first-order model and k_2 (mg/mg·min) is the rate constant of the pseudo-second-order model of adsorption, which can be obtained from the linear plot of t/q_t versus t.

The kinetic parameters and correlation coefficients of BPA adsorption by AMPS-St/MIPs are fitted with the above two models under three different temperatures by nonlinear regression and summarized in Table S2.

<table>
<thead>
<tr>
<th>Table S2 Kinetic parameters for the adsorption of BPA by AMPS-St/MIPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>293K</td>
</tr>
<tr>
<td>298K</td>
</tr>
<tr>
<td>303K</td>
</tr>
</tbody>
</table>

Adsorption isotherm and thermodynamic studies of AMPS-St/MIPs

Two commonly used models, the Langmuir and Freundlich models were adopted to describe the adsorption isotherms of BPA on AMPS-St/MIPs.
The Langmuir model, which assumes the adsorption takes place on a homogeneous surface with monolayer coverage and uniform energies, is expressed as:2-4

\[
\frac{C_e}{q_e} = \frac{1}{q_m} C_e + \frac{1}{q_m K_L}
\] \hspace{1cm} (4)

where \(q_e\) represents the amount of adsorbed BPA on AMPS-St/MIPs (mg/g), \(C_e\) is the equilibrium concentration of BPA in solution (mg/L), \(q_m\) is the maximum adsorption capacity of the adsorbent (mg/g), and \(K_L\) is the Langmuir constant (L/mg), which is related to the affinity of the binding sites. The values of \(q_m\) and \(K_L\) are determined from the slope and intercept of the linear plot of \(C_e/q_e\) against \(C_e\).

Freundlich model is an empirical model based on multilayer adsorption on a heterogeneous surface. The equation of Freundlich model is given as follows:5, 6

\[
\ln q_e = \frac{1}{n} \ln C_e + \ln K_F
\] \hspace{1cm} (5)

where \(q_e\) and \(C_e\) are defined the same as in the Langmuir model, and \(K_F\) and \(n\) are the Freundlich constants related to adsorption capacity and adsorption intensity, respectively. If \(n > 1\), suggesting favorable adsorption, then adsorption capacity increases. \(K_F\) and \(n\) can be calculated by a linear plot of \(\ln q_e\) versus \(\ln C_e\). The corresponding parameters calculated according to the Langmuir and Freundlich models are listed in Table S3.

Table S3 Isotherm parameters for the adsorption of BPA by AMPS-St/MIPs.

<table>
<thead>
<tr>
<th>temperature</th>
<th>Langmuir</th>
<th>Freundlich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(q_m) (mg/g)</td>
<td>(K_L) (L/mg)</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
The ΔG°, ΔH° and ΔS° are calculated from the following equations:

$$\Delta G^\circ = - RT \ln K^\circ$$ \hspace{1cm} (6)

$$\ln K^\circ = \frac{\Delta S^\circ}{R} - \frac{\Delta H^\circ}{RT}$$ \hspace{1cm} (7)

$$K_d = \frac{C_0 - C_e V}{C_e} \frac{V}{m}$$ \hspace{1cm} (8)

where R is the universal gas constant (8.314 J/K•mol), T is the absolute temperature (K), K_d is the distribution adsorption coefficient (g/L), C_0 is the initial concentration (mmol/L), C_e is the equilibration concentration of BPA in solution (mmol/L), V is the volume of the solution (L), and m is the mass of the adsorbent (g). The adsorption equilibrium constant, K°, can be calculated by plotting $\ln K_d$ versus C_e and extrapolating C_e to zero. The value of the intercept is $\ln K^\circ$. The thermodynamic parameters calculated from equations (6)-(8) at three different temperatures are listed in Table S5.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>Thermodynamic constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>84.06 0.05369 0.9893 10.8740 1.4847 0.9952</td>
</tr>
<tr>
<td>298</td>
<td>73.64 0.05021 0.9849 9.4046 1.5472 0.99672</td>
</tr>
<tr>
<td>303</td>
<td>67.33 0.03798 0.9738 7.5155 1.6782 0.9995</td>
</tr>
</tbody>
</table>

Table S4 Thermodynamic parameters of BPA adsorption on AMPS-St/MIPs.
<table>
<thead>
<tr>
<th>lnK°</th>
<th>3.092</th>
<th>2.835</th>
<th>2.767</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔG° (kJ/mol)</td>
<td>-7.39</td>
<td>-7.02</td>
<td>-6.97</td>
</tr>
<tr>
<td>ΔH° (kJ/mol)</td>
<td></td>
<td>-24.06</td>
<td></td>
</tr>
<tr>
<td>ΔS° (J/mol*K)</td>
<td></td>
<td></td>
<td>-56.68</td>
</tr>
</tbody>
</table>

Fig. S3 (a) Effect of the solution pH (20 mg, BPA concentration: 50 mg/L, volume: 40 mL, adsorption time: 1.5 h, temperature: 293 K); (b) Effect of ionic strength (20 mg, BPA concentration: 50 mg/L, volume: 40 mL, adsorption time: 1.5 h, temperature: 293 K, pH 6.0) on the BPA adsorption by AMPS-St/MIPs.

REFERENCES

