Electronic Supplementary Information (ESI)

Ammonia decomposition catalysis using lithium-calcium imide

Joshua W. Makepeace^{1,2}, Hazel M. A. Hunter², Thomas J. Wood², Ronald I. Smith², Claire A. Murray³ and William I.F. David^{1,2}*

¹Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK ²ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK ³Diamond Light Source Ltd, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0DE, UK * email bill.david@stfc.ac.uk

Section	Page
XRD of synthesised Li ₂ Ca(NH) ₂	S1
XRD of synthesised Li ₂ Ca(ND) ₂	S2
Ammonia decomposition setup	S2
Synchrotron X-ray powder diffraction setup	S3
In-situ neutron diffraction setup	S3
XRD of $LiNH_2 + SiO_2$	S4
Combined DSC-TGA of Li ₂ Ca(NH) ₂	S4
Synchrotron XRD of Li ₂ Ca(NH) ₂ under flowing He	S5
Synchrotron XRD of Li ₂ Ca(NH) ₂ under flowing NH ₃	S5
$Li_2Ca(ND)_2$ lattice parameters from neutron powder diffraction experiment	S6

XRD of synthesised Li₂Ca(NH)₂

Figure S1: Powder X-ray diffraction pattern of the sample of lithium-calcium imide used in the ammonia decomposition and synchrotron powder diffraction experiments.

XRD of synthesised Li₂Ca(ND)₂

Figure S2: Powder X-ray diffraction pattern of the sample of deuterated lithium-calcium imide used in the neutron powder diffraction experiment.

Ammonia decomposition setup

Figure S3: Reactor and experimental setup: (a) a typical 46.9 cm³ reactor showing NH₃ inlet, gas outlet, and thermocouple temperature probe positions, with a 0.5 g sample, drawn to scale.
(b) Experimental gas handling setup, where the inlet NH₃ gas flow is controlled prior to the reactor, and the outlet gas flow is monitored by a mass flow meter and analysed by a mass spectrometer.

Synchrotron X-ray powder diffraction setup

Figure S4: Synchrotron X-ray powder diffraction setup highlighting the powder sample sandwiched between two quartz wool plugs and contained within a 0.9mm i.d. sapphire capillary. Gas flows continuously through the capillary and the sample is heated to the desired temperature using a hot air blower. A photograph of the setup (without the hot air blower) is shown below.

In-situ neutron diffraction setup

Figure S5: *In-situ* neutron diffraction setup highlighting the powder sample contained within a 0.35mm wall thickness stainless steel cell and held in position in the neutron beam.

Figure S6: X-ray powder diffraction pattern of the post-reaction sample for LiNH₂ + SiO₂ heated under ammonia to 570 °C.

Combined DSC-TGA of Li₂Ca(NH)₂

Figure S7: Combined DSC-TGA data for the heating of lithium-calcium imide (5 °C/min) under 20 sccm flowing nitrogen gas.

Synchrotron XRD of Li₂Ca(NH)₂ under flowing He

Figure S8: Synchrotron powder X-ray diffraction pattern of the initial sample of lithium-calcium imide used for helium flow experiment.

Synchrotron XRD pattern of Li₂Ca(NH)₂ under flowing NH₃

Figure S9: Synchrotron powder X-ray diffraction pattern of the initial sample of lithium-calcium imide used for the ammonia flow experiment.

Li₂Ca(ND)₂ lattice parameters from neutron powder diffraction experiment

Figure S10: The lattice parameters of $Li_2Ca(ND)_2$ extracted from the Rietveld analysis of neutron diffraction data collected during the *in-situ* experiment, with the period between 180 minutes and 400 minutes enlarged in the inset graph.