Direct chemical synthesis of well dispersed L1₀-FePt Nanoparticles with tunable size and coercivity

Jianghai He,^{a,‡} Baoru Bian,^{a,‡} Qiang Zheng,^b Juan Du,^{a,*} Weixing Xia,^a Jian Zhang,^a Aru Yan,^a and J. Ping Liu^c

^a Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China

^b School of Materials Science and Engineering, Ningbo University of Technology, Ningbo, 315016, China
^c Department of Physics, University of Texas at Arlington, Arlington, TX, United States.

‡ These authors contributed equally to this work.

*Corresponding author: <u>dujuan@nimte.ac.cn</u> (J. Du)

Figure S1a. TG/DTA curves illustrated the decomposition of the precursor.

Figure S1b The derivative of weight loss.

DTA and TG were measured to know the decomposition process of the mixture of precursors $(Fe(acac)_3 \text{ and } Pt(acac)_2)$ in an alumina crucible with a heating rate of 5 °C/min under Ar flow. As shown in Figure S1, the precursor has two main weight loss stages in the temperature range of 200-500 °C. The first weight loss occurs at around 200 °C, and the very sharp and strong peak at 210°C as clearly shown on the derivative curve of weight loss in Figure S2b is attributed to the decomposition of the precursors. The strong and obvious endothermic peak appeared at 300 °C has a little bit delay compared with that of weight loss. The second weight loss occurs at 250 °C and finished at 450 °C as clearly shown in Figure S2b, which may be attributed to the loss of carbon. Since the decomposition of metal precursors of Fe(acac)_3 and Pt(acac)_2 gives out Fe and Pt metal atoms, carbon C and H₂O. At temperature around 250 °C,

the reaction of C+H₂O = H₂+CO will happen, which leads to the weight loss and an endothermic kink. At a temperature around 450 °C, this reaction ends, and therefore weight loss stops and endothermic peak disappears. There is another possibility that the change of weight loss between 250 °C and 450 °C may due to a phase transition from fcc structure to $L1_0$ structure. At higher temperatures no weight loss and endothermic peak is observed.

Figure S2 TEM images of the FePt NPs obtained at 300 °C (a), 400 °C (b), 450 °C (c).

Figure S3. The composition of FePt NPs was characterized by EDS. The EDS image of FePt nanoparticles prepared at temperature of 350 °C, 550 °C and 750 °C.

Figure S4. Room temperature magnetic hysteresis loops of the FePt NPs prepared at 300 °C, 400 °C and 450 °C.

chemical ordering degree.						
Temperature (°C)	300	350	400	450	550	750
Average size (nm)	6.6	7.2	8.3	9.8	11.5	15
H _c (Oe)	530	3150	7600	9900	11200	21500
Ordering degree, S	-	-	0.57	0.64	0.66	0.72

Table 1 Temperature dependent of the synthesized FePt nanoparticles size, coercivity and