Electronic Supplementary Information (ESI)

Electrode instead of catalyst and enzyme. A greener protocol for the synthesis of new 2-hydroxyacetamides derivatives containing \(\gamma \)-lactone ring

Abbas Maleki,* Davood Nematollahi, * Fereshteh Rasouli and Azam Zeinodini-Meimand
Table of Contents

I. Apparatus

II. Reagents

III. Electrochemical synthesis

IV. Characterization of Products

V. FTIR, 1H NMR, 13C NMR and mass spectra of 9a-17a

VI. Crystallography of 9a
Apparatus

Cyclic voltammetry, controlled-potential coulometry and preparative electrolysis were performed using an Autolab model PGSTAT302N potentiostat/galvanostat. The working electrode used in the voltammetry experiments was a glassy carbon disc (1.8 mm2 area) and platinum wire was used as a counter electrode. The working electrode used in controlled-potential coulometry and macroscale electrolysis was an assembly of four carbon rods (6 mm diameter and 4 cm length), placed as single rods in the edges of a square, and large stainless steely gauze constitutes the counter electrode. The working electrode potentials were measured versus Ag/AgCl (all electrodes from AZAR electrode). The electrolysis was performed in a simple cell (a narrow beaker type cell, 100 ml), equipped with a magnetic stirrer.

![Arrangement of the electrodes and cell](image)

Reagens

3,5-di-tert-butylcatechol, n-butylamine, n-propylamine, ethylamine, methylamine, benzylamine, cyclopentylamine, cyclohexylamine, cycloheptylamine, cyclooctylamine were reagent-grade materials and carbonate salts were of pro-analysis grade, from E. Merck. These chemicals were used without further purification.
Electrochemical synthesis 9a-17a: General procedure

Controlled-potential method

In a typical procedure, four carbon rods as working electrodes, a stainless steely gauze as auxiliary electrode along with an Ag/AgCl reference electrode were immersed into an undivided cell containing a mixture (60 mL) of water (carbonate buffer, \(c = 0.2 \) M, pH = 11)/acetonitrile (40/60 v/v). This mixture was pre-electrolyzed at the 0.05 V versus Ag/AgCl, then 1 mmol of 3,5-di-tert-butylcatechol and 1 mmol of 9-17 were added to the cell and the mixture was stirred until homogeneity was achieved. The electrolysis was terminated when the decay of the current became more than 95% (within about 3-4 hours). The process was interrupted during the electrolysis and the carbon anode was washed in acetone in order to reactivate it. At the end of electrolysis, after evaporation of acetonitrile, the residue was transferred to a separating funnel and extracted with cyclohexane or n-hexane. The extracted portion was recrystallized in n-hexane or chloroform. After purification, all products were characterized by: IR, \(^1\)H NMR, \(^{13}\)C NMR and MS. Moreover, product 9a was also characterized by single crystal X-ray diffraction.

Constant-current method (Galvanostatic method)

A mixture (60 mL) of water (carbonate buffer, \(c = 0.2 \) M, pH = 11)/acetonitrile (40/60 v/v) containing 1 mmol of 3,5-di-tert-butylcatechol and 1 mmol of 9-17 was electrolyzed in an undivided cell equipped with a carbon anode (an assembly of four rods, with 30 cm²) and a large stainless steely gauze cathode at 25 °C under a constant-current density of 1.0 mA cm⁻². The other steps are similar to those described above in the controlled-potential method.
Table S1. Electrochemical synthesis of 9a-17a at constant current conditiona

<table>
<thead>
<tr>
<th>Entry</th>
<th>Product</th>
<th>Yieldsb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9a</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>10a</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>11a</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>12a</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>13a</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>14a</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>15a</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>16a</td>
<td>62</td>
</tr>
<tr>
<td>9</td>
<td>17a</td>
<td>70</td>
</tr>
</tbody>
</table>

aGeneral procedure: 1 (1 mmol), 9-17 (1 mmol), acetonitrile (24ml), carbonat buffer (36ml), current density 1 mA cm⁻².
bYield of isolated product.

Characterization of Products

9a: N-butyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydropyran-2-yl)-2-hydroxyacetamide

![Chemical structure of 9a](image-url)

¹H NMR (300 MHz, acetone-d₆), δ (ppm): 0.88 (t, 3H), 1.06 (s, 9H), 1.21 (s, 9H), 1.32 (m, 2H), 1.44 (m, 2H), 3.20 (m, 2H), 4.49 (d, 1H), 4.61 (d, 1H), 7.12 (NH, 1H), 7.31 (ring, 1H); ¹³C NMR (75 MHz, acetone-d₆), δ (ppm): 13.2, 19.8, 25.7, 27.4, 31.3, 31.39, 39.3, 37.7, 39.2, 73.6, 89.3, 142.7, 146.5, 169.9, 170.7; IR (KBr): 3371, 3323, 1741, 1658, 1313 cm⁻¹; MS (EI) m/z (relative intensity): 326 [M+H⁺] (5), 269 (4), 196 (95), 181 (100), 169 (45), 130 (30), 57(18).
10a: N-propyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

![Chemical structure of 10a](image)

1H NMR (300 MHz, acetone-d_6), δ (ppm): 0.86 (t, 3H), 1.05 (s, 9H), 1.20 (s, 9H), 1.46 (t, 2H), 3.07 (m, CH$_2$), 4.50 (d, 1H), 4.73 (d, 1H), 7.10 (NH, 1H), 7.32 (ring, 1H); 13C NMR (75 MHz, acetone-d_6), δ (ppm): 10.9, 22.3, 25.6, 27.4, 31.3, 37.7, 41.2, 73.7, 89.4, 142.7, 146.57, 170.0, 170.8; IR (KBr): 3381, 3327, 1743, 1658, 1315 cm$^{-1}$; MS (EI) m/z (relative intensity): 313 [M+2H$^+$] (3), 312 [M+H$^+$] (10), 196 (55), 181 (63), 169 (42), 116 (42), 57 (100), 43 (98), 41 (90).

11a: N-ethyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

![Chemical structure of 11a](image)

1H NMR (300 MHz, acetone-d_6), δ (ppm): 1.07 (s, 12H), 1.21 (s, 9H), 3.19 (t, 2H), 4.50 (q, 2H), 7.13 (NH,1H), 7.31 (ring,H); 13C NMR (75 MHz, acetone-d_6), δ (ppm): 13.9, 25.6, 27.4, 31.3, 34.2, 37.6, 73.5, 89.2, 142.8, 146.4, 169.7, 170.7; IR (KBr): 3385, 3321, 1741, 1663, 1317 cm$^{-1}$; MS (EI) m/z (relative intensity): 300 [M+3] (1), 299 [M+2] (4), 298 [M+1] (40), 296 (1), 196 (12), 181(20), 102 (8), 72 (25), 57 (100), 41 (61), 29 (75).

12a: N-methyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

![Chemical structure of 12a](image)
\[^1\text{H}\text{ NMR}\ (300 \text{ MHz, acetone-}d_6), \delta (\text{ppm}): 1.07 (s, 9\text{H}), 1.21 (s, 9\text{H}), 2.70 (d, \text{CH}_3), 4.47 (d, 1\text{H}), 4.60 (d, 1\text{H}), 7.10 (\text{NH, 1H}), 7.30(\text{ring, 1H}); \ ^{13}\text{C NMR}\ (75 \text{ MHz, acetone-}d_6), \delta (\text{ppm}): 25.5, 25.6, 27.4, 31.2, 37.5, 73.7, 89.3, 142.8, 146.4, 170.4, 170.7; \ IR(\text{KBr}): 3362, 3319, 1740, 1664, 1313 \text{ cm}^{-1}; \ MS (\text{EI}) m/z \ (\text{relative intensity}): 285 \ [\text{M+2}] \ (1), 284 \ [\text{M+1}] \ (6), 196 (39), 181 (65), 169 (55), 125 (32), 57 (100), 41 (54), 29 (63).\]

\textbf{13a:} \textit{N-}benzyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

\[\text{(H}_3\text{C)}_2\text{C}\]

\[\text{O}\]

\[\text{C}_{(\text{CH}_3)}\text{OH}\]

\[\text{NH}\]

\[\text{C}\text{H}_2\text{CH}\text{C}(\text{CH}_3)_3\]

\[\text{O}\]

\[\text{C}(\text{CH}_3)_3\]

\[\text{O}\]

\[^1\text{H}\text{ NMR}\ (300 \text{ MHz, acetone-}d_6), \delta (\text{ppm}): 1.01 (s, 9\text{H}), 1.22 (s, 9\text{H}), 2.97(s, 2\text{H}), 4.28 (d, 1\text{H}), 4.40 (d, 1\text{H}), 4.60 (d, 1\text{H}), 4.74 (d, 1\text{H}), 7.27 (m, 6\text{H, aromatic}), 7.61 (\text{NH, 1H}); \ ^{13}\text{C NMR}\ (75 \text{ MHz, acetone-}d_6), \delta (\text{ppm}): 170.8, 170.2, 146.5, 142.8, 138.6, 128.29, 127.8, 127.0, 89.4, 74.1, 43.20, 37.7, 31.3, 27.4, 25.7; \ IR(\text{KBr}): 3377, 3292, 3086, 2960, 2872, 1739, 1662, 1315 \text{ cm}^{-1}; \ MS (\text{EI}) m/z \ (\text{relative intensity}): 361 \ [\text{M+2}] \ (2), 360 \ [\text{M+1}] \ (12), 285 (5), 196 (40), 181 (50), 164 (30), 106 (40), 91 (100), 57 (80), 41 (55), 29 (33).\]

\textbf{14a:} \textit{N-cyclopentyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide}

\[\text{(H}_3\text{C)}_2\text{C}\]

\[\text{O}\]

\[\text{C}_{(\text{CH}_3)}\text{OH}\]

\[\text{NH}\]

\[\text{C}\text{H}_2\text{CH}_{(\text{C})}\text{C}(\text{CH}_3)_3\]

\[\text{O}\]

\[^1\text{H}\text{ NMR}\ (500 \text{ MHz, CDCl}_3), \delta (\text{ppm}): 1.12 (s, 9\text{H}), 1.25 (s, 9\text{H}), 1.40 (m, 2\text{H}), 1.57 (m, 2\text{H}), 1.69 (m, 2\text{H}), 1.94 (m, 2\text{H}), 4.11(m, 2\text{H}), 4.47 (s, 1\text{H}), 5.75 (d, lactone ring, 1\text{H}), 7.13 (s, \text{NH, 1H}); \ ^{13}\text{C NMR}\ (125 \text{ MHz, CDCl}_3), \delta (\text{ppm}): 24.1, 24.1, 26.6, 28.5, 32.2, 32.9, 33.7, 38.8, 52.4, 73.0, 89.9, 144.6, 146.4, 169.8; \ IR(\text{KBr}): 1636, 1733, 2958, 3309\]
cm⁻¹; MS (EI) m/z (relative intensity): 339 [M+2] (20), 338 [M+1] (80), 337 [M] (10), 263 (18), 197 (75), 181 (90), 142 (30), 84 (45).

15a. N-cyclohexyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

1H NMR (500 MHz, CDCl₃), δ (ppm): 1.12 (s, 9H), 1.18 (m, 2H), 1.24 (s, 9H), 1.33 (m, 2H), 1.61 (q, 1H), 1.71 (q, 1H), 1.83, 1.92 (d, 1H), 3.63 (m, 1H), 4.47 (s, 1H), 5.71 (lactone ring, 1H), 7.14 (NH, 1H); 13C NMR (125 MHz, CDCl₃), δ (ppm): 171.6, 169.4, 146.5, 144.4, 89.9, 73.0, 50.0, 38.8, 33.3, 32.9, 32.2, 32.0, 28.5, 26.6, 25.7, 25.2; IR (KBr): 3439, 3320, 2959, 2937, 2857, 1753, 1649, 1551 cm⁻¹; MS (EI) m/z (relative intensity): 352 [M+1] (2), 295 (1), 277 (2), 197 (5), 196 (39), 181 (50), 83 (48), 67 (48), 57(100), 41(77).

16a. N-cycloheptyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

1H NMR (500 MHz, CDCl₃), δ (ppm): 7.14 (s, 1H), 5.78 (d, 1H), 4.45 (s, 1H), 4.14 (s, 1H), 3.81 (m, 1H), 1.88 (m, 2H), 1.61 (m, 4H), 1.47 (m, 2H), 1.43 (m, 4H), 1.39 (s, 9H), 1.11 (s, 9H); 13C NMR (125 MHz, CDCl₃), δ (ppm): 171.6, 169.1, 146.5, 144.4, 89.9, 73.1, 52.2, 38.8, 35.3, 35.0, 32.2, 28.5, 28.4, 28.4, 26.6, 24.4, 24.4; IR (KBr): 3310, 2957,
2932, 2866, 1736, 1632 cm⁻¹; MS (EI) m/z (relative intensity): 367 [M+2] (1), 366 [M+1] (2), 269 (0.5), 196 (2), 181 (2), 57 (100), 41 (17).

17a: N-cyclooctyl-2-(2,4-di-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyacetamide

\[
\begin{align*}
\text{NH} & \\
& \\
O & \text{C} \\
& \text{CH-OH} \\
& \text{C(CH}_3)_3 \\
& \text{C} \\
\end{align*}
\]

\(^1\)H NMR (500 MHz, CDCl₃), δ (ppm): 7.14 (s, 1H), 5.77 (d, 1H), 4.44 (d, 1H), 4.14 (s, 1H), 3.87 (t, 1H), 1.77 (m, 2H), 1.65 (t, 2H), 1.55 (m, 10H), 1.24 (s, 9H), 1.12 (s, 9H); \(^13\)C NMR (125 MHz, CDCl₃), δ (ppm): 171.6, 169.1, 146.5, 144.4, 89.9, 73.0, 51.2, 38.9, 32.6, 32.3, 32.2, 28.5, 27.4, 27.3, 26.6, 25.9, 24.0; IR (KBr): 3316, 2926, 1737, 1633, 1533 cm⁻¹; MS (EI) m/z (relative intensity): 382 [M+3] (1), 380 [M+1] (6), 364 (2), 323 (6), 290 (10), 226 (12), 195 (100), 184 (50), 181 (85), 169 (80), 125 (40), 83 (53), 69 (55), 56 (98), 41 (42).
FTIR, 1H NMR, 13C NMR and mass spectra

FTIR of 9a
1H NMR of 9a
Expanded 1H NMR of 9a
13C NMR of 9a
Expanded 13C NMR of 9a
MS of 9a
FTIR of 10a
1H NMR of 10a
Expanded 1H NMR of 10a
13C NMR of 10a
Expanded 13C NMR of 10a
MS of 10a
IR of 11a
1H NMR of 11a
Expanded 1H NMR of 11a
13C NMR of 11a
Expanded 13C NMR of 11a
MS of 11a
IR of 12a
\(^1\text{H} \text{NMR of 12a}\)
Expanded 1H NMR of 12a
13C NMR of 12a
Expanded 13C NMR of 12a
MS of 12a
IR of 13a
1H NMR of 13a
Expanded 1H NMR of 13a
13C NMR of 13a
Expanded 13C NMR of 13a
MS of 13a
IR of 14a
1H NMR of 14a
Expanded 1H NMR of 14a

TBCyda 1H NMR in CDCl3 at 298 K 89/6/13

Current Data Parameters
NAME Meller
EXPND 12
POLYNOD 1

F2 - Acquisition Parameters
Date 20100804
Time 10:20
INSTRUM 400L
PLOUGH 5 mm QAP 4H/13
PULPROG 2930
T0 30768
SOLVENT CDCl3
NS 8
DS 0
SNR 10348:578 Hz
PSDRES 0.005555 Hz
AG 1.5963556 sec
RG 256
DK 46.400 usec
DE 6.000 usec
TE 268.0 ms
DS 5.00000000 sec
MCRESP 0.00000000 sec
MCRESH 0.00000000 sec

--- CHANNEL 11 ---
NUC 1H
P1 10.50 usec
P1 -3.00 usec
SFO1 500.130385 MHz

F2 - Processing parameters
ST 30768
W 500.130000 MHz
NOW EW
SEBB 0
LS 0.20 Hz
GB 0
PC 1.00

3D NMR plot parameters
C1 20.00 cm
C1 20.20 cm
P1 6.300 ppm
P1 3143.32 Hz
P2 3.558 ppm
F1 5621.44 Hz
PMNMR 0.13000 ppm/cm
NOM 65.49595 Hz/cm
13C NMR of 14a
Expanded 13C NMR of 14a
MS of 14a
FTIR of 15a
1HNMR of 15a
Expanded 1H NMR of 15a
13C NMR of 15a
Expanded 13C NMR of 15a
MS of 15a
IR of 16a
Expanded 1H NMR of 16a
Expanded 1H NMR of 16a
Expanded 1H NMR of 16a
Expanded 13C NMR of 16a
FTIR of 17a
1H NMR of 17a
Expanded 1H NMR of 17a
Expanded 1H NMR of 17a
13C NMR of 17a
Expanded 13C NMR of 17a
VI. Crystallography of 9a

Table S2. Selected bond lengths (Å) and bond Angles (°) of compound 9a

<table>
<thead>
<tr>
<th>Bond lengths</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2)–C(7)</td>
<td>1.326(3)</td>
</tr>
<tr>
<td>C(7)–C(8)</td>
<td>1.498(2)</td>
</tr>
<tr>
<td>C(8)–O(2)</td>
<td>1.459(2)</td>
</tr>
<tr>
<td>C(1)–O(2)</td>
<td>1.353(2)</td>
</tr>
<tr>
<td>C(1)–O(1)</td>
<td>1.205(2)</td>
</tr>
<tr>
<td>C(13)–C(14)</td>
<td>1.520(3)</td>
</tr>
<tr>
<td>C(8)–C(13)</td>
<td>1.565(3)</td>
</tr>
<tr>
<td>C(14)–N(1)</td>
<td>1.330(3)</td>
</tr>
<tr>
<td>C(14)–O(4)</td>
<td>1.233(2)</td>
</tr>
<tr>
<td>C(15)–N(1)</td>
<td>1.459(3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond angles</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(3)–C(13)–C(8)</td>
<td>112.89(16)</td>
</tr>
<tr>
<td>O(3)–C(13)–C(14)</td>
<td>109.89(16)</td>
</tr>
<tr>
<td>C(14)–C(13)–C(8)</td>
<td>110.50(16)</td>
</tr>
<tr>
<td>O(4)–C(14)–N(1)</td>
<td>122.7(2)</td>
</tr>
<tr>
<td>O(4)–C(14)–C(13)</td>
<td>120.16(19)</td>
</tr>
<tr>
<td>N(1)–C(14)–C(13)</td>
<td>117.11(17)</td>
</tr>
<tr>
<td>N(1)–C(15)–C(16)</td>
<td>112.5(2)</td>
</tr>
<tr>
<td>C(14)–N(1)–C(15)</td>
<td>122.57(19)</td>
</tr>
<tr>
<td>C(1)–O(2)–C(8)</td>
<td>109.69(13)</td>
</tr>
<tr>
<td>O(1)–C(1)–C(2)</td>
<td>130.32(19)</td>
</tr>
</tbody>
</table>
Table S3: Crystal data and structure refinement for compound 9a

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C<sub>18</sub>H<sub>21</sub>NO<sub>4</sub></td>
</tr>
<tr>
<td>Formula weight</td>
<td>326</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>298(2)</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>9.384(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>10.484(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>11.281(2)</td>
</tr>
<tr>
<td>α (°)</td>
<td>102.829(17)</td>
</tr>
<tr>
<td>β (°)</td>
<td>94.191(18)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>113.456(18)</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>976.4(4)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (Mg/m³)</td>
<td>1.107</td>
</tr>
<tr>
<td>Crystal size (mm³)</td>
<td>0.50×0.17×0.15</td>
</tr>
<tr>
<td>Absorption coefficient (mm<sup>-1</sup>)</td>
<td>0.077</td>
</tr>
<tr>
<td>θ range for data collection (°)</td>
<td>1.88 to 29.31</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-10 ≤ h ≤ 12</td>
</tr>
<tr>
<td></td>
<td>-14 ≤ k ≤ 14</td>
</tr>
<tr>
<td></td>
<td>-15 ≤ l ≤ 15</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>11380</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3246 [R<sub>ref</sub> = 0.0611]</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.5263 and 0.2964</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F<sup>2</sup></td>
</tr>
<tr>
<td>Goodness-of-fit on R<sup>2</sup></td>
<td>1.127</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R<sub>f</sub> = 0.0744</td>
</tr>
<tr>
<td></td>
<td>wR<sub>2</sub> = 0.1880</td>
</tr>
<tr>
<td></td>
<td>R<sub>f</sub> = 0.1106</td>
</tr>
<tr>
<td></td>
<td>wR<sub>2</sub> = 0.2092</td>
</tr>
<tr>
<td></td>
<td>0.401 and -0.392</td>
</tr>
<tr>
<td>Largest diff. peak and hole (e Å<sup>-3</sup>)</td>
<td></td>
</tr>
</tbody>
</table>
Figure S1. X-ray crystal structure of compound 9a.
Figure S2. X-ray crystal structure of compound 9a. The hydrogen atoms are omitted for the reason of clarity.