Electronic Supplementary Information

Ferromagnetic α-Fe$_2$O$_3$ NPs: A potential catalyst in Sonogashira Hagihara cross coupling and Hetero-Diels-Alder reactions

Meenal Kataria, Subhamay Pramanik, Navleen Kaur, Manoj Kumar, Vandana Bhalla,*

Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar 143005, and Punjab, India
E-mail: vanmanan@yahoo.co.in

vanmanan@yahoo.co.in

S4-S5 Table S1: Comparison of catalytic activity of in situ α-Fe$_2$O$_3$ nanoparticles for synthesis of C-C cross coupling products by Sonogashira Hagihara reaction over other procedures reported in literature.

S6 Table S2: Comparison of catalytic activity of in situ α-Fe$_2$O$_3$ nanoparticles for synthesis of pyran derivatives by hetero Diels Alder reaction over other procedures reported in literature.

S7 Table S3: Comparison table between the present catalytic system and previously reported system (Angew. Chem. Int. Ed. 2008, 47, 4862.).

S8 UV-vis spectroscopic titration of derivative 1 (5 μM) in H$_2$O/EtOH (7:3, v/v) upon the addition Fe$^{3+}$ ions (0-25 equiv.) and fluorescence emission spectra of derivative 1 (5μM) upon additions of 25 equiv. of 70 wt% tert-butyl hydroperoxide solution in H$_2$O/THF (3/7, v/v).

S9 Fluorescence spectroscopic titration of derivative 1 (5 μM) in H$_2$O/EtOH (7:3, v/v) upon the addition Fe$^{3+}$ ions (0-25 equiv.) and UV-vis spectra showing the presence of Fe (0) nanoparticle bands.

S10 UV-vis spectroscopic titration of derivative 1 (5 μM) in H$_2$O/EtOH (7:3, v/v) upon additions of 25 equiv. of 70 wt% tert-butyl hydroperoxide solution in H$_2$O/THF (3/7, v/v) and Scheme showing the formation of oxidized species of derivative 1 on the addition of oxidizing agent.

S11 Overlay of NMR spectra of oxidized species of derivative 1 and derivative 1.

S12 Overlay of IR spectra of both oxidized species of derivative 1 and derivative 1.

S1
ESI-MS mass spectra of oxidized species of derivative 1 and TEM, DLS analysis of derivative 1 (5 μM) showing the size of Fe$_2$O$_3$ nanorods at temperature 70°C

TEM, DLS of derivative 1 (5 μM) showing the size of Fe$_2$O$_3$ nanorods at pH (12) and UV-vis spectroscopic titration of derivative 1 (5 μM) in H$_2$O/EtOH (7:3, v/v) by varying Fe$^{3+}$ ions to ligand ratio

TEM images and Raman spectra of α-Fe$_2$O$_3$ nanoparticles prepared by commercial method.

XRD pattern of spherical α-Fe$_2$O$_3$ nanoparticles prepared by commercial method.

UV-vis spectra of reaction mixture show the interaction between substrates & catalyst and UV-vis spectra of reaction mixture showing the completion of reaction.

Kinetic profile showing the formation of product with time when the catalyst loading is 0.005 mol & 0.004 mol.

Kinetic profile showing the formation of product with time when the catalyst loading is 0.0035 mol & 0.0025 mol.

Kinetic profile showing the formation of product with time when the catalyst loading is 0.0015 mol.

Photograph showing the magnetic separation of in situ generated α-Fe$_2$O$_3$ nanoparticles.

XRD & TEM images of recycled α-Fe$_2$O$_3$ nanoparticles.

Atomic Absorption Studies (AAS) of the residual liquid left after the magnetic separation of catalyst.

IR spectra of (A) p-nitrobenzaldehyde (B) separated reaction mixture containing p-nitrobenzaldehyde and in situ generated α-Fe$_2$O$_3$ NPs

1H and 13C NMR of spectrum of 4a

1H and 13C NMR of spectrum of 4b and 4c

1H and 13C NMR of spectrum of 4d

1H and 13C NMR of spectrum of 4e

1H and 13C NMR of spectrum of 4f
S30 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 4g.\]
S31 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 4h.\]
S32 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 4i.\]
S33 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 4j.\]
S34 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 4k.\]
S35 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 4l.\]
S36 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 4m.\]
S37 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 6.\]
S38 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 8.\]
S39 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 14a.\]
S40 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 14b.\]
S41 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 14c.\]
S42 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 14d.\]
S43 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 14e.\]
S44 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 14f.\]
S45 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 14g\]
S46 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 14h\]
S47 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 14i.\]
S48 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 14j.\]
S49 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 15.\]
S50 \[^1^H\text{ and }^{13}C\text{ NMR of spectrum of } 16.\]
Table S1: Comparison of catalytic activity of α-Fe₂O₃ NPs for Sonogashira cross coupling reaction over other catalytic system reported in the literature.

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Publication</th>
<th>Catalyst used</th>
<th>Use of Noble metal</th>
<th>Use of CuI</th>
<th>Use of Amine</th>
<th>Solvent</th>
<th>Nano catalysis</th>
<th>Recycling</th>
<th>Reaction time</th>
<th>Temp. required (in °C)</th>
<th>Isolated Yield (Product, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Present manuscript</td>
<td>α-Fe₂O₃, K₂CO₃</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Ethylene glycol (green solvent)</td>
<td>Yes</td>
<td>Yes (13 times)</td>
<td>13 h</td>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>Green Chem., 2015, 17, 1893-1898</td>
<td>Pd-CS, Pd-CS-Glu and Pd-CS-SH, K₂CO₃</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>EtOH/Water</td>
<td>Yes</td>
<td>Yes (6 times)</td>
<td>6 h</td>
<td>65</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>Green Chem., 2015, 17, 1071-1076</td>
<td>Pd/C, DABCO</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>γ-Valerolactone</td>
<td>No</td>
<td>No</td>
<td>4 h</td>
<td>60-100</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>Green Chem., 2014, 16, 2515-2522</td>
<td>PEG-2000, PdCl₂(PPh₃)₂</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Water, Et₃N</td>
<td>No</td>
<td>No</td>
<td>24 h</td>
<td>25</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>Chem. Commun., 2015, 51, 10871-10874</td>
<td>L₅-Pd</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>DMF</td>
<td>No</td>
<td>Yes (5 times)</td>
<td>1.5 h</td>
<td>90</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>Chem. Eur. J., 2014, 20, 1-13</td>
<td>PEGylated g-Fe₂O₃-Pd NPs</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>THF</td>
<td>Yes</td>
<td>Yes</td>
<td>24 h</td>
<td>65</td>
<td>86</td>
</tr>
<tr>
<td>7</td>
<td>Org. Lett., 2014, 16, 3724-3727</td>
<td>(N-heterocyclic carbene)-Cu and (N-heterocyclic carbene)-Pd complexes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DMSO</td>
<td>No</td>
<td>No</td>
<td>24 h</td>
<td>120</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>J. Mater. Chem. A, 2014, 2, 484-491</td>
<td>Pd-PPh₃-MCM-41@SiO₂@Fe₃O₄ (Very complicated)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Water</td>
<td>No</td>
<td>Yes</td>
<td>4 h</td>
<td>70</td>
<td>95</td>
</tr>
<tr>
<td>9</td>
<td>Org. Lett., 2013, 15, 65-67</td>
<td>Pd-Cu dual Reactor</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DMF</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>120</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>Angew. Chem. Int. Ed. 2013, 52, 11554-11559</td>
<td>Pd(0) nanoparticle, KOAc</td>
<td>Yes (Pd)</td>
<td>No</td>
<td>Yes</td>
<td>NMP (toxic)</td>
<td>Yes</td>
<td>No</td>
<td>24 h</td>
<td>160</td>
<td>83</td>
</tr>
<tr>
<td>11</td>
<td>Green Chem., 2013, 15, 2349-2355</td>
<td>Pd catalyst, K₂CO₃</td>
<td>Yes (Pd)</td>
<td>No</td>
<td>No</td>
<td>EtOH/Chlorobenzene (flammable)</td>
<td>No</td>
<td>Yes</td>
<td>18 h</td>
<td>60</td>
<td>88</td>
</tr>
<tr>
<td>12</td>
<td>Green Chem., 2013, 15, 2132-2042</td>
<td>Fe₂O₃@SiO₂@PPh₃@Pd(0), NaOH (Very complicated)</td>
<td>Yes (Pd)</td>
<td>No</td>
<td>No</td>
<td>Water</td>
<td>No</td>
<td>Yes</td>
<td>15 min-4 h</td>
<td>80</td>
<td>91</td>
</tr>
<tr>
<td>13</td>
<td>Chem. Eur. J., 2013, 19, 14024-14029</td>
<td>5% Pd-Au/C, K₃PO₄</td>
<td>Yes (Pd, Au)</td>
<td>No</td>
<td>No</td>
<td>tPrOH/H₂O</td>
<td>No</td>
<td>No</td>
<td>20 h</td>
<td>80</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Source</td>
<td>Catalyst</td>
<td>Solvent</td>
<td>Ligand(s)</td>
<td>Temp</td>
<td>Yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------------------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Chem. Commun., 2010, 46, 6524-6526</td>
<td>Pd@meso-SiO$_2$ (Very complicated)</td>
<td></td>
<td>EtOH</td>
<td>Yes</td>
<td>35h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Angew. Chem. Int. Ed., 2007, 46, 1536-1538</td>
<td>Au(I), K$_3$PO$_4$</td>
<td></td>
<td>O-Xylene</td>
<td>No</td>
<td>30 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Langmuir, 2010, 14, 12225-12229</td>
<td>Au-Ag-Pd trimetallic nanoparticles</td>
<td></td>
<td>DMF-H$_2$O</td>
<td>No</td>
<td>24 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Org. Lett., 2000, 2935-2938</td>
<td>Pd(PPh3)$_2$, Ag$_2$O</td>
<td></td>
<td>THF</td>
<td>No</td>
<td>2 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S2: Comparison of catalytic activity of α-Fe$_2$O$_3$ NPs for hetero-Diels–Alder reaction over other catalytic system reported in literature.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Publication</th>
<th>Catalyst Used</th>
<th>Use of noble metal</th>
<th>Cost of catalyst</th>
<th>Use of Nano catalyst</th>
<th>Amount of Catalyst used</th>
<th>Use of activated diene/di enophile</th>
<th>Solvent</th>
<th>Additives</th>
<th>Temp p. (˚C)</th>
<th>Time</th>
<th>Yield %</th>
<th>Recyclability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Present manuscript</td>
<td>α-Fe$_2$O$_3$ NPs</td>
<td>No</td>
<td>Very cheap</td>
<td>Yes</td>
<td>1 mol %</td>
<td>No</td>
<td>p-xylene (90%)/Neat condition (68%)</td>
<td>No</td>
<td>60</td>
<td>10h</td>
<td>Upto 90%</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Org. Lett., 2015, 17, 3506-3509</td>
<td>LiClO$_4$</td>
<td>No</td>
<td>Costly</td>
<td>No</td>
<td>1 equiv.</td>
<td>Yes</td>
<td>DCE/MeCN</td>
<td>Yes</td>
<td>80</td>
<td>2h</td>
<td>94</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Org. Lett., 2015, 17, 3536-3539</td>
<td>Cull in 4Å MS</td>
<td>No</td>
<td>Costly and Sensitive</td>
<td>No</td>
<td>10 mol%</td>
<td>Yes</td>
<td>THF/t-BuOH (1:1)</td>
<td>Yes (Et$_3$N, Cs$_2$CO$_3$)</td>
<td>25</td>
<td>1-48</td>
<td>90</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>J. Am. Chem. Soc., 2014, 136, 17714-17717</td>
<td>PCN-223 porphyrin ZrMOF</td>
<td>Yes</td>
<td>Costly</td>
<td>No</td>
<td>1 mol%</td>
<td>No</td>
<td>Toluene</td>
<td>AgBF$_4$</td>
<td>80</td>
<td>12 h</td>
<td>99</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Chem. Commun., 2014, 50, 14187-14190</td>
<td>Calcium BINOL-derived phosphates</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>2.5 mol%</td>
<td>Yes</td>
<td>DCM</td>
<td>HCl</td>
<td>Rt</td>
<td>12h</td>
<td>94%</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>Org. Lett., 2014, 16, 3564-3567</td>
<td>Cu(I)OTf$_2$L</td>
<td>No</td>
<td>-</td>
<td>No</td>
<td>10 mol%</td>
<td>Yes</td>
<td>Toluene</td>
<td>Base</td>
<td>0˚C</td>
<td>Upto 24h</td>
<td>90%</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Org. Lett., 2013, 15, 9-12</td>
<td>Rh(cod)$_2$BF$_4$</td>
<td>Yes</td>
<td>costly</td>
<td>No</td>
<td>5 mol%</td>
<td>No</td>
<td>DCM</td>
<td>Acid</td>
<td>80˚C</td>
<td>Upto 24h</td>
<td>Upto 90%</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>J. Am. Chem. Soc., 2012, 134, 5512-5515</td>
<td>Iron(III) porphyrin catalyst</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Benzene- upto 90%/ Neat condition- trace yield</td>
<td>No</td>
<td>80˚C</td>
<td>12h</td>
<td>Upto 90%</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>J. Am. Chem. Soc., 2009, 131, 12882-12883</td>
<td>Chiral phosphoric acid</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>2-100 mol%</td>
<td>Yes</td>
<td>Toluene</td>
<td>-</td>
<td>RT</td>
<td>24 h</td>
<td>Upto 95%</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>Org. Lett., 2008, 10, 13-16</td>
<td>1-Np-TADDOL</td>
<td>No</td>
<td>-</td>
<td>No</td>
<td>20 mol%</td>
<td>Yes</td>
<td>Toluene/DCM</td>
<td>Acid chloride</td>
<td>-78˚C</td>
<td>15 min</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Org. Lett., 2004, 6, 13-16</td>
<td>Ti(OiPr)$_4$</td>
<td>No</td>
<td>costly</td>
<td>No</td>
<td>5 mol%</td>
<td>Yes</td>
<td>Toluene</td>
<td>TFA</td>
<td>0˚C</td>
<td>72 h</td>
<td>Upto 92%</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>Org. Lett., 2003, 5, 7-10</td>
<td>Diethyl Zinc</td>
<td>No</td>
<td>-</td>
<td>No</td>
<td>10 mol%</td>
<td>Yes</td>
<td>Toluene</td>
<td>Acid</td>
<td>-20˚C</td>
<td>30 h</td>
<td>Upto 99%</td>
<td>No</td>
</tr>
</tbody>
</table>
Table S3: Comparison table between the present catalytic system and previously reported system for Sonogashira coupling reactions (Angew. Chem. Int. Ed. 2008, 47, 4862-4865).

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Points of Comparison on Reaction Conditions</th>
<th>Present Manuscript</th>
<th>Angew. Chem. Int. Ed. 2008, 47, 4862-4865</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Reactivity towards Substrates</td>
<td>Both for aryl iodides and bromides</td>
<td>Only for aryl iodides</td>
</tr>
<tr>
<td>2.</td>
<td>Recyclability of catalyst</td>
<td>Yes (13 times)</td>
<td>No</td>
</tr>
<tr>
<td>3.</td>
<td>Mechanistic Study</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4.</td>
<td>Base</td>
<td>K$_2$CO$_3$ (mild, Cheap)</td>
<td>Cs$_2$CO$_3$ (Strong, Costly)</td>
</tr>
<tr>
<td>5.</td>
<td>Time</td>
<td>13-24 h</td>
<td>72 h</td>
</tr>
<tr>
<td>6.</td>
<td>Solvent</td>
<td>Ethylene Glycol (green solvent)</td>
<td>Toluene</td>
</tr>
<tr>
<td>7.</td>
<td>Catalyst Loading</td>
<td>Low catalyst loading (0.5 mol %)</td>
<td>High catalyst loading (15 mol %)</td>
</tr>
</tbody>
</table>
Upon the addition of equal aliquots (25 equiv.) of \textit{tert}-butyl hydroperoxide (a oxidizing agent) in H$_2$O/EtOH (7:3, v/v) mixture.

Figure S2: Fluorescence spectra of derivative 1 (5 µM) after the addition of equal aliquots of \textit{tert}-butyl hydroperoxide (a oxidizing agent) in H$_2$O/EtOH (7:3, v/v) mixture.

Figure S1: UV-vis. spectroscopic spectra of derivative 1 (5 µM) in H$_2$O/EtOH (7:3, v/v) upon the addition Fe$^{3+}$ ions (0-25 equiv.).
Figure S3: Fluorescence spectra of derivative 1 (5 µM) showing the variation on addition of Fe$^{3+}$ ions (0-25 equiv.) in H$_2$O/EtOH (7:3, v/v) mixture.

Figure S4: UV-vis Spectra showing the formation of Fe (0) Nps bands after keeping the solution of derivative 1 and Fe$^{3+}$ ion (0-25 equiv.) in H$_2$O/EtOH (3:7, v/v) mixture under inert atmosphere for 10 min and followed by oxidation resulting in the *in situ* formation of Fe$_2$O$_3$ nanoparticles.
Figure S5: UV-vis Spectra of derivative 1 on addition of tert-butyl hydroperoxide (0-25 equiv.) in H$_2$O/EtOH (3:7, v/v) mixture followed by the addition of Fe$^{3+}$ ion (0-25 equiv.).

Scheme 1: Oxidation of derivative 1 by using tBuOOH to yield N-oxide derivative.
Figure S6: Overlay of 1H NMR spectra of derivative 1 and oxidized species of derivative 1 showing the upfield shifting of all protons.
Figure S7: FT-IR spectrum of oxidized derivative 1 showed stretching band at around 1340 cm\(^{-1}\) corresponding to N\(^{+}\)-O\(^{-}\) stretching frequency.
Figure S8: ESI-MS mass spectrum of residue obtained showed a parent ion peak, m/z = 1043 due to oxidized species of derivative 1.

Figure S9: (A) TEM (Scale bar 20 nm) and (B) DLS analysis of compound 1 (5 μM) showing the size of Fe₂O₃ nanoparticles at temperature 70°C in the range of 60-80 nm.
Figure S10: (A) TEM (Scale bar 50 nm) and (B) DLS analysis of compound 1 (5 μM) showing the size of Fe₂O₃ nanoparticles in the presence of sodium hydroxide (pH=12) in the range of 50-60 nm.

Figure S11: UV-vis. spectra by varying Fe³⁺ ions to ligand ratio a) 2:1, b) 1:1, c) 1:2.
Figure S12: A) TEM images of spherical α-Fe$_2$O$_3$ NPs prepared by literature reported method (*J. Mater. Chem. A*, 2013, 1, 830) B) DLS analysis showing the size of α-Fe$_2$O$_3$ NPs 4-6 nm.

Figure S13: Raman spectrum of spherical α-Fe$_2$O$_3$ NPs prepared by literature reported method (*J. Mater. Chem. A*, 2013, 1, 830); [Reference 1: *CrystEngComm.*, 2014, 16, 10618].
Figure S14: (a-b) XRD diffraction pattern of spherical α-Fe₂O₃ NPs prepared by commercial reported method.
Figure S15: UV-vis. Spectra recorded during the reaction of 1a and 2a in the presence of in situ generated Fe$_2$O$_3$ NPs in ethylene glycol.

Figure S16: UV-vis spectra of reaction between 1a and 2a showing the completion of reaction to give product 4a catalysed by Fe$_2$O$_3$ NPs when the catalyst loading was 0.005 mol.
Figure S17: (a) Kinetic profile showing the formation of product with time when the catalyst loading is 0.005 mol; (b) calibration curve. Reactions were monitored by UV-vis. Spectroscopy.

Multiple R = 0.995
R² = 0.991
Slope = 0.150
Rate = \(\frac{2.303 \times 0.150}{3600} = 0.959 \times 10^{-4} \) sec⁻¹

Figure S18: (a) Kinetic profile showing the formation of product with time when the catalyst loading is 0.004 mol, (b) calibration curve. Reactions were monitored by UV-vis. Spectroscopy.

Multiple R = 0.996
R² = 0.992
Slope = 0.128
Rate = \(\frac{2.303 \times 0.128}{3600} = 0.818 \times 10^{-4} \) sec⁻¹
Figure S19: (a) Kinetic profile showing the formation of product with time when the catalyst loading is 0.0035 mol, (b) calibration curve. Reactions were monitored by UV-vis. Spectroscopy.

Multiple R = 0.996
$R^2 = 0.992$
Slope = 0.120
Rate = $(2.303 \times 0.120)/3600 = 0.767 \times 10^{-4}$ sec$^{-1}$

Figure S20: (a) Kinetic profile showing the formation of product with time when the catalyst loading is 0.0025 mol, (b) calibration curve. Reactions were monitored by UV-vis. spectroscopy.

Multiple R = 0.9901
$R^2 = 0.981$
Slope = 0.093
Rate = $(2.303 \times 0.093)/3600 = 0.59 \times 10^{-4}$ sec$^{-1}$
Multiple $R = 0.988$
$R^2 = 0.977$
Slope = 0.064
Rate = $(2.303 \times 0.064)/3600 = 0.409 \times 10^{-4}$ sec$^{-1}$
Figure S22: α-Fe$_2$O$_3$ nanoparticles (a) for Sonogashira cross coupling reaction i) dispersed in the reaction mixture, ii) adsorbed on a magnetic stirring bar, iii) an external magnet attracted stirring bar and α-Fe$_2$O$_3$ nanoparticles; (b) for Hetero-Diels-Alder reaction i) dispersed in the reaction mixture, ii) adsorbed on a magnetic stirring bar, iii) an external magnet attracted stirring bar and α-Fe$_2$O$_3$ nanoparticles.
Figure S23: XRD of *in situ* generated rod like α-Fe$_2$O$_3$ NPs separated after 13 cycles recycling.

Figure S24: TEM image of *in situ* generated rod like α-Fe$_2$O$_3$ NPs separated after 13 cycles.
Figure S25: Atomic Absorption Studies (AAS) of the residual liquid left after the magnetic separation of catalyst and found that only 0.166 mg/lit = 0.166 ppm of iron leached into the solution.
Figure S26: IR spectra of (a) p-nitrobenzaldehyde; (b) separated reaction mixture containing p-nitrobenzaldehyde and α-Fe$_2$O$_3$ NPs.
Fig. S27A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 4a:

Fig. S27B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 4a:
Fig. S28A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 4b & 4c:

![1H NMR Spectrum](image)

Fig. S28B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 4b & 4c:

![13C NMR Spectrum](image)
Fig. S29A: 1H NMR Spectra (CDCl₃, 500 MHz, ppm) of compound 4d:

Fig. S29B: 13C NMR Spectra (CDCl₃, 125 MHz, ppm) of compound 4d:
Fig. S30A: 1H NMR Spectra (CDCl$_3$, 300 MHz, ppm) of compound 4e:

Fig. S30B: 13C NMR Spectra (CDCl$_3$, 75 MHz, ppm) of compound 4e:
Fig. S31A: 1H NMR Spectra (CDCl$_3$, 300 MHz, ppm) of compound 4f:

![H NMR Spectra](image1)

Fig. S31B: 13C NMR Spectra (CDCl$_3$, 75 MHz, ppm) of compound 4f:

![C NMR Spectra](image2)
Fig. S32A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 4g:

![H NMR Spectra](image)

Fig. S32B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 4g:

![C NMR Spectra](image)
Fig. S33A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 4h:

![1H NMR Spectra](image1)

Fig. S33B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 4h:

![13C NMR Spectra](image2)
Fig. S34A: 1H NMR Spectra (CDCl$_3$, 300 MHz, ppm) of compound 4i:

Fig. S34B: 13C NMR Spectra (CDCl$_3$, 75 MHz, ppm) of compound 4i:
Fig. S35A: 1H NMR Spectra (CDCl$_3$, 300 MHz, ppm) of compound 4j:

Fig. S35B: 13C NMR Spectra (CDCl$_3$, 75 MHz, ppm) of compound 4j:
Fig. S36A: 1H NMR Spectra (CDCl$_3$, 300 MHz, ppm) of compound 4k:

![H NMR Spectra](image1)

Fig. S36B: 13C NMR Spectra (CDCl$_3$, 75 MHz, ppm) of compound 4k:

![C NMR Spectra](image2)
Fig. S37A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 4l:

Fig. S37B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 4l:
Fig. S38A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 4m:

Fig. S38B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 4m:
Fig. S39A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 6:

Fig. S39B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 6:
Fig. S40A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 8:

Fig. S40B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 8:
Fig. S41A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 14a:

Fig. S41B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 14a:
Fig. S42A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 14b:

Fig. S42B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 14b:
Fig. S43A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 14c:

Fig. S43B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 14c:
Fig. S44 A: 1H NMR Spectra (CDCl$_3$, 300 MHz, ppm) of compound 14d:

Fig. S44B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 14d:
Fig. S45A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 14e:

![NMR Spectra](image)

Fig. S45B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 14e:

![NMR Spectra](image)
Fig. S46A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 14f:

Fig. S46B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 14f:
Fig. S47A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 14g:

Fig. S47B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 14g:
Fig. S48A: 1H NMR Spectra (CDCl$_3$, 500 MHz, ppm) of compound 14h:

Fig. S48B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 14h:
Fig. S49A: 1H NMR Spectra (CDCl$_3$, 300 MHz, ppm) of compound 14i:

Fig. S49B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 14i:
Fig. S50A: 1H NMR Spectra (CDCl$_3$, 300 MHz, ppm) of compound 14j:

![H NMR Spectra](image)

Fig. S50B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 14j:

![C NMR Spectra](image)
Fig. S51: 1H NMR Spectra (CDCl$_3$, 300 MHz, ppm) of compound 15:

Fig. S52A: 1H NMR Spectra (CDCl$_3$, 300 MHz, ppm) of compound 16:
Fig. S52B: 13C NMR Spectra (CDCl$_3$, 125 MHz, ppm) of compound 16: