Supporting Information

Replacing Pd(OAc)$_2$ with supported palladium nanoparticles in ortho-directed CDC reaction of alkylbenzenes

Yong-Sheng Bao,* Dongling Zhang, Meilin Jia and Bao Zhaorigetu*

College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, Inner Mongolia 010022, China

*(Y.B.) E-mail: sbbys197812@163.com.
*(B.Z.) E-mail: zrgt@imnu.edu.cn.

Contents

1. Figures S1–S2 S2
2. GC-MS Analysis of Reaction of 1a with 2a and 1a with 2e S3
3. Characterization Data for the Products S6
4. 1H NMR and 13C NMR Spectra of the Products S9
1. Figures S1–S2

Figure S1. XRD patterns of catalysts with different loadings

Figure S2. TEM images of catalysts: (a) 1 wt% Pd/γ-Al₂O₃ and (b) 5 wt% Pd/γ-Al₂O₃. (c, d) PdNPs size distributions of 1 wt% Pd/γ-Al₂O₃ and 5 wt% Pd/γ-Al₂O₃, respectively.
2. GC-MS Analysis of Reaction of 1a with 2a and 1a with 2e
The GC spectra of reaction solution of 1a with 2a:

- RT: 0.00 - 21.03
- TLC MS:

01_150515
093237
The GC spectra of reaction solution of 1a with 2e:

[Image of GC spectra showing peaks at specific RT and time.

RT: 0.00 - 21.02

Relative Abundance

Time (min)

0 2 4 6 8 10 12 14 16 18 20

0 10 20 30 40 50 60 70 80 90 100

[Diagram of molecular structures with labels COOH and CH2OH.

NL: 6.00E9
TIC: MS
02_15051500250

m/z 50 100 150 200 250 300 350 400

Relative Abundance

0 10 20 30 40 50 60 70 80 90 100

[Diagram of molecular spectrum with labels COOH and CH2OH.

NL: 3.15E8
T: m/z Full scan [50.00-400.00]
3. Characterization Data for the Products

phenyl(2-(pyridin-2-yl)phenyl)methanone 3aa.\(^1\) Conversion: 83\% (GC). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.39 (d, \(J = 4.0\) Hz, 1H), 7.78 (d, \(J = 7.7\) Hz, 1H), 7.67 (d, \(J = 7.5\) Hz, 2H), 7.63 – 7.57 (m, 2H), 7.57 – 7.49 (m, 3H), 7.41 – 7.35 (m, \(J = 7.4\) Hz, 1H), 7.30 – 7.24 (m, \(J = 7.7\) Hz, 2H), 7.09 – 6.99 (m, 1H).

(2-(pyridin-2-yl)phenyl)(p-tolyl)methanone 3ab.\(^1\) Yield: 80\% (43.7 mg). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.40 (d, \(J = 4.5\) Hz, 1H), 7.77 (d, \(J = 7.7\) Hz, 1H), 7.63 – 7.54 (m, 4H), 7.52 – 7.47 (m, 3H), 7.08 (d, \(J = 8.0\) Hz, 2H), 7.03 (dd, \(J = 7.1, 5.4\) Hz, 1H), 2.32 (s, 3H).

(2-(pyridin-2-yl)phenyl)(o-tolyl)methanone 3ac.\(^1\) Yield: 64\% (35.0 mg). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.43 (d, \(J = 4.6\) Hz, 1H), 7.67 – 7.50 (m, 5H), 7.41 (d, \(J = 7.8\) Hz,
1H), 7.16 (d, J = 7.4 Hz, 2H), 7.08 (d, J = 7.6 Hz, 1H), 7.05 – 6.98 (m, 1H), 6.97 – 6.90 (m, 1H), 2.57 (s, 3H).

(2-(pyridin-2-yl) phenyl) (m-tolyl) methanone 3ad.² Yield: 76% (41.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.40 (d, J = 4.4 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.55 – 7.44 (m, 5H), 7.23 – 7.18 (m, 1H), 7.16 (t, J = 7.6 Hz, 1H), 7.08 – 7.02 (m, 1H), 2.29 (s, 3H).

(4-methoxyphenyl)(2-(pyridin-2-yl)phenyl)methanone 3ae.¹ Yield: 81% (46.9 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.44 (d, J = 3.8 Hz, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.68 (d, J = 8.8 Hz, 2H), 7.62 – 7.56 (m, 1H), 7.51 (d, J = 4.0 Hz, 2H), 7.48 (d, J = 7.8 Hz, 1H), 7.10 – 7.03 (m, 1H), 6.76 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H).

(4-chlorophenyl)(2-(pyridin-2-yl)phenyl)methanone 3af.¹ Yield: 69% (40.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, J = 4.4 Hz, 1H), 7.78 (d, J = 7.7 Hz, 1H), 7.65 – 7.57 (m, 4H), 7.56 – 7.49 (m, 3H), 7.23 (d, J = 8.5 Hz, 2H), 7.09 – 7.02 (m, 1H).

(2-chlorophenyl)(2-(pyridin-2-yl) phenyl)methanone 3ag.² Yield: 57% (33.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, J = 2.6 Hz, 1H), 7.75 – 7.50 (m, 5H), 7.46 (d, J = 6.9 Hz, 1H), 7.35 – 7.27 (m, 1H), 7.25 – 7.20 (m, 1H), 7.18 (t, J = 7.0 Hz, 1H), 7.11 – 6.97 (m, 2H).

(3-chlorophenyl)(2-(pyridin-2-yl)phenyl)methanone 3ah.³ Yield: 65% (38.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.37 (s, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.58 – 7.50 (m, 5H), 7.41 (d, J = 8.5 Hz, 2H), 7.11 – 7.03 (m, 1H).

(4-bromophenyl)(2-(pyridin-2-yl)phenyl)methanone 3ai.⁴ Yield: 63% (42.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.37 (s, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.58 – 7.50 (m, 5H), 7.41 (d, J = 8.5 Hz, 2H), 7.11 – 7.05 (m, 1H).

(3-bromophenyl)(2-(pyridin-2-yl)phenyl)methanone 3aj.³ Yield: 68% (46.0 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, J = 4.1 Hz, 1H), 7.82 (s, 1H), 7.78 (d, J = 7.7 Hz, 1H), 7.62 (t, J = 6.8 Hz, 2H), 7.59 – 7.51 (m, 5H), 7.49 (d, J = 7.9 Hz, 1H), 7.13 (t, J = 7.8 Hz, 1H), 7.06 – 7.00 (m, 1H).

benzo[h]quinolin-10-yl(phenyl)methanone 3ba.¹ Yield: 84% (47.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.51 (dd, J = 4.4, 1.7 Hz, 1H), 8.11 (dd, J = 8.0, 1.7 Hz, 1H), 8.06 (dd, J = 8.0, 0.9 Hz, 1H), 7.91 (d, J = 8.8 Hz, 1H), 7.83 – 7.73 (m, 4H), 7.63 (dd, J = 7.2, 1.1 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.34 (dd, J = 8.0, 4.4 Hz, 1H), 7.30 (t, J = 7.7 Hz, 2H).

(2-(1H-pyrazol-1-yl)phenyl)(phenyl)methanone 3ca.⁵ Yield: 70% (34.7 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.60 (m, 5H), 7.60 – 7.56 (m, 1H), 7.51 – 7.47 (m, 1H), 7.45 – 7.41 (m, 1H), 7.40 (d, J = 1.6 Hz, 1H), 7.32 – 7.27 (m, 2H), 6.21 – 6.14 (m, 1H).

(5-methyl-2-(pyridin-2-yl)phenyl)(phenyl)methanone 3da.¹ Yield: 81% (44.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, J = 4.8 Hz, 1H), 7.73 – 7.67 (m, 3H), 7.58 – 7.53 (m, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.45 – 7.36 (m, 3H), 7.29 – 7.25 (m, 2H), 7.00 (dd, J = 6.9, 5.4 Hz, 1H), 2.47 (s, 3H).
References
4. 1H NMR and 13C NMR Spectra of the Products

1H NMR of phenyl(2-(pyridin-2-yl)phenyl)methanone 3aa

1H NMR of (2-(pyridin-2-yl)phenyl)(p-tolyl)methanone 3ab
1H NMR of (2-(pyridin-2-yl)phenyl)(o-tolyl)methanone 3ac

1H NMR of (2-(pyridin-2-yl)phenyl)(m-tolyl)methanone 3ad
1H NMR of (4-methoxyphenyl)(2-(pyridin-2-yl)phenyl)methanone 3ae

1H NMR of (4-chlorophenyl)(2-(pyridin-2-yl)phenyl)methanone 3af
1H NMR of (2-chlorophenyl)(2-(pyridin-2-yl)phenyl)methanone 3ag

1H NMR of (3-chlorophenyl)(2-(pyridin-2-yl)phenyl)methanone 3ah
1H NMR of (4-bromophenyl)(2-(pyridin-2-yl)phenyl)methanone 3ai

1H NMR of (3-bromophenyl)(2-(pyridin-2-yl)phenyl)methanone 3aj
1H NMR of (4-iodophenyl)(2-(pyridin-2-yl)phenyl)methanone 3ak

1H NMR of benzo[h]quinolin-10-yl(phenyl)methanone 3ba
1H NMR of (2-(1H-pyrazol-1-yl)phenyl)(phenyl)methanone 3ca

1H NMR of (5-methyl-2-(pyridin-2-yl)phenyl)(phenyl)methanone 3da