Supporting information for

Multifunctional β-amino alcohols as bio-based amine curing agents for the isocyanate- and phosgene-free synthesis of 100 % bio-based polyhydroxyurethane thermosets

H. Blattmann and R. Mühlaupt

a. Freiburg Materials Research Center (FMF) and Institute for Macromolecular Chemistry, Stefan-Meier Strasse 31, D-79104 Freiburg, Germany.
b. E-mail: rolfmuhlaupt@web.de

Table of contents

1. NMR spectra of prepared amino alcohols and cyclic carbonates
2. MS spectrum of L-AA after recrystallization from acetonitrile.
3. IR spectra of prepared amino alcohols and NIPU samples
4. DSC curves of prepared amino alcohols
5. Gelation and pot life time of NIPU resins
6. Shear-dependent viscosity of NIPU resins
7. Swelling degrees in water and toluene
8. DMA curves of NIPU samples
9. TGA curves of prepared amino alcohols and NIPU samples
Fig. S1 ¹H-NMR spectrum in MeOD-d₄ (top), ¹³C-NMR spectrum MeOD-d₄ (center), and HSQC NMR spectrum (bottom) of GG-AA (1).
Fig. S 2 1H-NMR spectrum in MeOD-d$_4$ (top), 13C-NMR spectrum MeOD-d$_4$ (center), and HSQC NMR spectrum (bottom) of TMPG-AA (2).
Fig. S 3 1H-NMR spectrum in MeOD-d$_4$ (top), 13C-NMR spectrum MeOD-d$_4$ (center), and HSQC NMR spectrum (bottom) of PG-AA (3).
Fig. S 4 1H-NMR spectrum in MeOD-d_4 (top), 13C-NMR spectrum MeOD-d_4 (center), and HSQC NMR spectrum (bottom) of crude L-AA (4).
Fig. S5 1H-NMR spectrum in MeOD-d$_4$ (top) and 13C-NMR spectrum MeOD-d$_4$ (bottom) of L-AA (4) after recrystallization from acetonitrile.
Fig. S6 1H-NMR spectrum in CDCl$_3$ of GGC (5).

Fig. S7 1H-NMR spectrum in CDCl$_3$ of TMPGC (6).
Fig. S 8 1H-NMR spectrum in CDCl$_3$ of PGC (7).

Fig. S 9 MS spectrum (dir-HR-pos, +100 V, APCI, MeOH) of L-AA (4) after recrystallization from acetonitrile.
Fig. S10 IR spectrum of GG-AA (1).

Fig. S11 IR spectrum of TMPG-AA (2).
Fig. S12 IR spectrum of PG-AA (3).

Fig. S13 IR spectrum of L-AA (4).

Fig. S14 IR spectrum of L-AA (4) after recrystallization from acetonitrile.
Fig. S15 IR spectrum of GGC (5).

Fig. S16 IR spectrum of TMPGC (6).

Fig. S17 IR spectrum of PGC (7).
Fig. S18 IR spectrum of NIPU sample TMPGC+HMDA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).

Fig. S19 IR spectrum of NIPU sample TMPGC+HMDA+25 wt.-% GG-AA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).

Fig. S20 IR spectrum of NIPU sample TMPGC+HMDA+50 wt.-% GG-AA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).
Fig. S 21 IR spectrum of NIPU sample TMPGC+HMDA+25 wt.-% TMPG-AA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).

Fig. S 22 IR spectrum of NIPU sample TMPGC+HMDA+50 wt.-% TMPG-AA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).

Fig. S 23 IR spectrum of NIPU sample TMPGC+HMDA+25 wt.-% PG-AA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).
Fig. S24 IR spectrum of NIPU sample TMPGC+HMDA+50 wt.-% PG-AA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).

Fig. S25 IR spectrum of NIPU sample TMPGC+HMDA+25 wt.-% L-AA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).

Fig. S26 IR spectrum of NIPU sample TMPGC+HMDA+50 wt.-% L-AA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).
Fig. S27 IR spectrum of NIPU sample GGC+HMDA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).

Fig. S28 IR spectrum of NIPU sample GGC+HMDA+50 wt.-% TMPG-AA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).

Fig. S29 IR spectrum of NIPU sample PGC+HMDA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).
Fig. S30 IR spectrum of NIPU sample PGC+HMDA+50 wt.-% TMPG-AA (cured at 80 °C for 14 h and post-cured 4 h at 100 °C).

Fig. S31 DSC measurement of GG-AA (cooling and heating rate: 10 K min⁻¹, first cooling and second heating sequence).

Fig. S32 DSC measurement of TMPG-AA (cooling and heating rate: 10 K min⁻¹, first cooling and second heating sequence).
Fig. S 33 DSC measurement of PG-AA (cooling and heating rate: 10 K min$^{-1}$, first cooling and second heating sequence).

Fig. S 34 DSC measurement of crude L-AA (cooling and heating rate: 10 K min$^{-1}$, first cooling and second heating sequence).
Fig. S35 Rheological experiment for determination of gelation and pot life time at 80 °C for NIPU sample consisting of TMPGC+HMDA+ 25 wt.-% GG-AA (10 rad s⁻¹, 5 %).

Fig. S36 Rheological experiment for determination of gelation and pot life time at 80 °C for NIPU sample consisting of TMPGC+HMDA+ 50 wt.-% GG-AA (10 rad s⁻¹, 5 %).
Fig. S 37 Rheological experiment for determination of gelation and pot life time at 80 °C for NIPU sample consisting of TMPGC+HMDA+ 25 wt.-% TMPG- AA (10 rad s⁻¹, 5 %).

Fig. S 38 Rheological experiment for determination of gelation and pot life time at 80 °C for NIPU sample consisting of TMPGC+HMDA+ 50 wt.-% TMPG- AA (10 rad s⁻¹, 5 %).
Fig. S 39 Rheological experiment for determination of gelation and pot life time at 80 °C for NIPU sample consisting of TMPGC+HMDA+ 25 wt.-% PG-AA (10 rad s⁻¹, 5 %).

Fig. S 40 Rheological experiment for determination of gelation and pot life time at 80 °C for NIPU sample consisting of TMPGC+HMDA+ 50 wt.-% PG-AA (10 rad s⁻¹, 5 %).
Fig. S 41 Rheological experiment for determination of gelation and pot life time at 80 °C for NIPU sample consisting of TMPGC+HMDA+ 25 wt.-% L-AA (10 rad s⁻¹, 5 %).

Fig. S 42 Rheological experiment for determination of gelation and pot life time at 80 °C for NIPU sample consisting of TMPGC+HMDA+ 50 wt.-% L-AA (10 rad s⁻¹, 5 %).
Fig. S43 Rheological frequency sweep experiments at different temperatures for GG-AA (100-0.1 rad s$^{-1}$, 5%).

Fig. S44 Rheological frequency sweep experiments at different temperatures for TMPG-AA (100-0.1 rad s$^{-1}$, 5%).
Fig. S45 Rheological frequency sweep experiments at different temperatures for PG-AA (100-0.1 rad s$^{-1}$, 5%).

Fig. S46 Swelling degrees in water of prepared NIPU samples.
Fig. S47 Swelling degrees in toluene of prepared NIPU samples.

Fig. S48 DMA curves of NIPU sample TMPGC+HMDA+25 wt.% GG-AA (1 Hz, 0.1 %, -50-100 °C).
Fig. S49 DMA curves of NIPU sample TMPGC+HMDA+50 wt.-% GG-AA (1 Hz, 0.1 %, -50-100 °C).

Fig. S50 DMA curves of NIPU sample TMPGC+HMDA+25 wt.-% TMPG-AA (1 Hz, 0.1 %, -50-100 °C).
Fig. S 51 DMA curves of NIPU sample TMPGC+HMDA+50 wt.-% TMPG-AA (1 Hz, 0.1 %, -50-100 °C).

Fig. S 52 DMA curves of NIPU sample TMPGC+HMDA+25 wt.-% PG-AA (1 Hz, 0.1 %, -50-100 °C).
Fig. S53 DMA curves of NIPU sample TMPGC+HMDA+50 wt.-% PG-AA (1 Hz, 0.1 %, -50-100 °C).

Fig. S54 DMA curves of NIPU sample TMPGC+HMDA+25 wt.-% L-AA (1 Hz, 0.1 %, -50-100 °C).
Fig. S 55 DMA curves of NIPU sample TMPGC+HMDA+50 wt.-% L-AA (1 Hz, 0.1 %, -50-100 °C).

Fig. S 56 DMA curves of NIPU sample GGC+HMDA+50 wt.-% TMPG-AA (1 Hz, 0.1 %, -50-100 °C).
Fig. S57 DMA curves of NIPU sample PGC+HMDA+50 wt.-% TMPG-AA (1 Hz, 0.1 %, -50-100 °C).

Fig. S58 DMA curves of NIPU sample TMPGC+HMDA (1 Hz, 0.1 %, -50-100 °C).
Fig. S 59 DMA curves of NIPU sample GGC+HMDA (1 Hz, 0.1 %, -50-100 °C).

Fig. S 60 DMA curves of NIPU sample PGC+HMDA (1 Hz, 0.1 %, -50-100 °C).
Fig. S 61 TGA curves of amino alcohols (10 K min$^{-1}$, air).

Fig. S 62 TGA curves of NIPU samples (10 K min$^{-1}$, air).