Synthesis of glycidyl azide polymers (GAPs) via binary ionic liquid–water mixtures without catalysts

Xiaodong Xu, a,b Meihua Liu, *a Yuan Yin, a Chunbai Zheng, *a Pengyang Deng a and Dongfeng Xue a

a Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. E-mail: zhengcb@ciac.ac.cn; Fax: +86-431-85262329; Tel: +86-431-85262716.

b University of Chinese Academy of Sciences, Beijing10039, China.

Supporting Information

General Methods: The GAP synthesis was carried out in a 250 ml three-necked round bottom flask equipped with a thermometer, a reflux condenser, and a mechanical stirrer. The 30.00 g of PECH was dissolved in mixed solvents with a different mass ratio of [Bmim]Cl and distilled water and stirred. The solution was heated to 95°C in an oil bath, and then 21.09 g of sodium azide was rapidly added into the reaction mixture with continued stirring for 10 h at this temperature. The reaction was monitored with quantitative 13C-NMR. After the reaction finished, the mixtures were washed sequentially with distilled water more than 3 times until all salts were removed. The water was then evaporated to recover the products.

Table 1.

<table>
<thead>
<tr>
<th>Entry</th>
<th>[bmim][Cl]/H2O a</th>
<th>PECH g</th>
<th>NaN3 g</th>
<th>Time h</th>
<th>T °C</th>
<th>Yield b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4:1</td>
<td>30</td>
<td>21.09</td>
<td>10</td>
<td>95</td>
<td>89.17</td>
</tr>
<tr>
<td>2</td>
<td>5:1</td>
<td>30</td>
<td>21.09</td>
<td>10</td>
<td>95</td>
<td>56.52</td>
</tr>
<tr>
<td>3</td>
<td>100:0</td>
<td>30</td>
<td>21.09</td>
<td>10</td>
<td>95</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>1:1</td>
<td>30</td>
<td>21.09</td>
<td>10</td>
<td>95</td>
<td>45.7</td>
</tr>
<tr>
<td>5</td>
<td>2:3</td>
<td>30</td>
<td>21.09</td>
<td>10</td>
<td>95</td>
<td>37.5</td>
</tr>
<tr>
<td>6</td>
<td>1:4</td>
<td>30</td>
<td>21.09</td>
<td>10</td>
<td>95</td>
<td>24.82</td>
</tr>
<tr>
<td>7</td>
<td>0:100</td>
<td>30</td>
<td>21.09</td>
<td>10</td>
<td>95</td>
<td>0</td>
</tr>
</tbody>
</table>

* a mass ratio

b Isolated yields

Fig. 1. 1H-NMR spectra of GAP and PECH.
Fig. 2. IR spectra of GAP1.

Fig. 3. 13C-NMR spectra of GAP1.

Fig. 4. IR spectra of GAP2.

Fig. 5. 13C-NMR spectra of GAP2.

Fig. 6. IR spectra of GAP3.

Fig. 7. 13C-NMR spectra of GAP3.
Fig. 8. IR spectra of GAP4.
Fig. 9. 13C-NMR spectra of GAP4.

Fig. 10. IR spectra of GAP5.
Fig. 11. 13C-NMR spectra of GAP5.

Fig. 12. IR spectra of GAP6.
Fig. 13. 13C-NMR spectra of GAP6.
Fig. 14. IR spectra of GAP7.

Fig. 15. 13C-NMR spectra of GAP7.

