Supporting Information

Visible Light Promoted Synthesis of Dihydropyrano[2,3-c]chromenes via a Multicomponent-Tandem Strategy under Solvent and Catalyst Free Conditions

Jyoti Tiwari, a## Mohammad Saquib, a## Swastika Singh, a Fatima Tufail, a Mandavi Singh, a Jaya Singh, b Jagdamba Singh a*

aEnvironmentally Benign Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad-211002 (India); Tel: +919415218507; E-mail: dr.jdsau@gmail.com
bDepartment of Chemistry, LRPG College, Sahibabad, Ghaziabad-201005 (India)

##Equal Contribution

Title page 1
Experimental - General remarks 2
General experimental procedure 3
Spectral data for dihydropyrano[2,3-c]chromenes, 4H-chromenes and pyrano[2,3-d]pyrimidinone 3 - 8
1H and 13C spectra of dihydropyrano[2,3-c]chromenes 4, 26, 29, 34, 40, 4H-chromenes 46, 47 and pyrano[2,3-d]pyrimidinone 48 9 - 26
UV spectras for benzaldehydes 1, 8, 15, 4-hydroxy coumarin 3 and cyclic CH-acids 44, 45 27 - 29
Melting point table for all other dihydropyrano[2,3-c]chromenes with references 30 - 35
Experimental

General Remarks

All chemicals were reagent grade and purchased from Aldrich, Alfa Aesar, Merck, Spectrochem and Qualigens and were used without further purification. The reactions were monitored using pre-coated Aluminium TLC plates of silica gel G/UV-254 of 0.25 mm thickness (Merck 60 F-254). Column chromatography was performed using silica gel (60-120) and (100-200). NMR spectra were recorded on a Bruker Avance-II 400FT spectrometer at 400 MHz (1H) and 100 MHz (13C) in DMSO or CDCl$_3$ using TMS as an internal reference. Mass spectra (ESIMS) were obtained on a Waters UPLC-TQD mass spectrometer. IR spectra were recorded on a Thermo Scientific Nicolet iS5 FT-IR spectrometer while UV spectra were obtained using a Varian Cary 300 UV-Vis spectrophotometer. Elemental analyses were carried out in a Thermo Scientific (FLASH 2000) CHN Elemental Analyser. Melting points were determined by open glass capillary method and were uncorrected.
General Experimental Procedure:
To a 50 mL round bottom flask were added the respective benzaldehyde (1, 5-21) (1 mmol) and malononitrile (2) (1.2 mmol) or ethyl 2-cyanoacetate (22) under visible light irradiation using a household 20W CFL with stirring. After formation of the intermediate (Knoevenagel product), (TLC control), 4-hydroxy coumarin (3) (1 mmol) or cyclic CH-acids 43-45 were added to the reaction mixture, followed by the addition of a few drops of ethanol in order to get the reaction mixture in form of a paste, and the resulting mixture was stirred till completion of the reaction (TLC control). The reaction was quenched with water resulting in the formation of a solid precipitate which was filtered and dried to obtain the crude product. The crude product was recrystallized from hot methanol to obtain the desired pure compounds (23-42, 46-48). However in a few instances required purity could not be achieved through recrystallization, necessitating purification by column chromatography over silica gel.

Compound 4

![Chemical Structure]

Pale yellow solid; Mp: 258-261°C; IR (KBr): 3347, 2745, 1730, 1159 cm⁻¹; ¹H NMR (DMSO-d₆) (δ, ppm): 4.67 (1H, s), 7.41-7.45 (2H, m), 7.49-7.50 (2H, m), 7.56-7.59 (2H, m), 7.68-7.72 (1H, m), 7.94 (1H, dd, J=7.9 & 1.3 Hz), 8.16 -8.21 (2H, m) ppm; ¹³C NMR (DMSO-d₆) (δ, ppm): 36.8, 56.6, 102.7, 112.7, 116.4, 118.7, 122.6, 123.5, 124.5, 129.0, 132.9, 146.5, 150.5, 152.2, 153.9, 158.1, 159.4; MS (ESI):m/z 361; found 362 [M+H]⁺; Anal. calcd for C₁₉H₁₁N₃O₅: C 63.16, H 3.07, N 11.63; found C 63.19 H 3.02, N 11.67 %.
Compound 26

![Chemical Structure of Compound 26](image)

White solid; Mp: 254-255 °C; IR (KBr): 3390, 2363, 1730, 1171 cm\(^{-1}\); \(^1\)H NMR (DMSO-\(d_6\)) (\(\delta\), ppm): 2.27 (3H, s); 4.41 (1H, s); 7.10 (2H, d, \(J = 8.1\) Hz); 7.15 (2H, d, \(J = 8.1\) Hz); 7.3 (2H, s); 7.38-7.46 (2H, m); 7.64-7.68 (1H, m); 7.92 (dd, 1H, \(J = 7.8\) & \(J = 1.2\) Hz); \(^{13}\)C NMR (DMSO-\(d_6\)) (\(\delta\), ppm): 20.6, 36.5, 58.0, 104.1, 112.9, 116.3, 119.1, 122.4, 124.4, 127.4, 128.9, 132.6, 136.1, 140.2, 152.0, 153.2, 157.9, 159.4; MS (ESI): m/z 330; found 331 [M+H]^+; Anal. calcd for C\(_{20}\)H\(_{14}\)N\(_2\)O\(_3\): C, 72.72; H, 4.27; N, 8.48; found: C, 72.69; H, 4.23; N 8.46 %.

Compound 29

![Chemical Structure of Compound 29](image)

White solid; Mp: 257-259 °C; IR (KBr): 3367, 2375, 1707, 1526 cm\(^{-1}\); \(^1\)H NMR (DMSO-\(d_6\)) (\(\delta\), ppm): 4.98 (1H, s); 7.31-7.37 (2H, m); 7.42-7.51 (5H, m); 7.68-7.73 (1H, m); 7.91 (dd, 2H, \(J = 7.88\) & 1.5 Hz); \(^{13}\)C NMR (DMSO-\(d_6\)) (\(\delta\), ppm): 33.9, 55.9, 102.4, 112.7,
116.4, 118.5, 122.5, 124.5, 127.6, 128.8, 131.8, 132.4, 132.9, 133.3, 139.2, 152.2, 154.1, 158.1, 159.2; MS (ESI): m/z 384; found 385 [M+H]^+; Anal. calcd for C_{19}H_{10}Cl_2N_2O_3: C 59.24, H 2.62, N 7.27; found C 59.29, H 2.66, N 7.27 %.

Compound 34

White solid; Mp: 262-266 °C; IR (KBr): 3428, 2340, 1723, 1580, 1182 cm\(^{-1}\); \(^1\)H NMR (DMSO-d\(_6\)) (δ, ppm): 4.34 (1H, s); 6.72 (2H, s); 7.07 (2H, s); 7.34-7.43 (4H, m); 7.66 (1H, s); 7.88 (1H, s); 9.38 (1H, s); \(^1^3\)C NMR (DMSO-d\(_6\)) (δ, ppm): 36.13, 58.4, 104.4, 112.9, 115.1, 116.4, 119.3, 122.3, 124.5, 128.6, 132.7, 133.6, 152.0, 152.9, 156.4, 157.8, 159.4; MS (ESI): m/z 332; found 333 [M+H]^+; Anal. calcd for C_{19}H_{12}N_2O_4: C, 68.67; H, 3.64; N, 8.43; found C, 68.72; H, 3.56; N, 8.44 %.

Compound 40

![Diagram of Compound 40](image)
Yellow solid; Mp: 241-244 °C; IR (KBr); 3324, 2327, 1729, 1166 cm⁻¹; ¹H NMR (DMSO-d₆) (δ, ppm): 1.12 (3H, t); 4.00 (2H, q); 4.86 (1H, s); 7.38 (1H, d, J = 7.8 Hz); 7.43-7.46 (1H, m); 7.53 (2H, d, J = 8.7 Hz); 7.64-7.68 (1H, m); 7.92 (2H, brs); 8.00 (1H, dd, J = 7.9 & 1.3 Hz); 8.10 (d, 2H, J = 8.7 Hz) ¹³C NMR (DMSO-d₆) (δ, ppm): 14.0, 35.5, 59.0, 75.8, 105.4, 112.9, 116.3, 122.5, 122.9, 124.4, 129.3, 132.6, 145.9, 152.2, 152.4, 153.4, 158.5, 159.7, 167.2.; MS (ESI): m/z 408; found: 409 [M+H]⁺, Anal. calcd for C₂₁H₁₆N₂O₇: C, 61.77; H, 3.95; N, 6.85; found: C, 61.80; H, 3.98; N, 6.90 %.

Compound 46

![Compound 46](image)

White solid; Mp: 241-243 °C; IR (KBr): 3390, 2363, 1730, 1171 cm⁻¹; ¹H NMR (DMSO-d₆) (δ, ppm): 1.93-1.99 (2H, m); 2.26-2.32 (2H, m); 2.64-2.65 (2H, m); 4.36 (1H, s); 7.13 (2H, s); 7.45 (d, 2H, J = 8.5 Hz); 8.15 (d, 2H, J = 8.4 Hz); ¹³C NMR (DMSO-d₆) (δ, ppm): 19.7, 26.5, 35.5, 36.1, 56.8, 112.8, 119.2, 123.3, 128.4, 146.1, 152.0, 158.5, 164.7, 195.5; MS (ESI): m/z 311; found: 312 [M+H]⁺, Anal. calcd for C₁₆H₁₃N₃O₄: C 61.73, H 4.21, N 13.50; found: C 61.74, H 4.27, N 13.57 %.

Compound 47
White solid; Mp: 212-215 °C; IR (KBr): 3359, 2305, 1673, 1163 cm\(^{-1}\); \(^1\)H NMR (DMSO-d\(_6\)) (δ, ppm): 0.99 (3H, s); 1.08 (3H, s); 2.12 (2H, d, \(J = 16.1\) Hz); 2.23 (2H, d, \(J = 16.1\) Hz); 2.48 (2H, s); 4.22 (1H, s); 6.82 (2H, brs); 7.17 (d, 2H, \(J = 8.4\) Hz); 7.26 (d, 2H, \(J = 8.4\) Hz); \(^{13}\)C NMR (DMSO-d\(_6\)) (δ, ppm): 26.9, 28.3, 31.7, 35.1, 49.9, 57.7, 112.4, 119.4, 128.1, 128.9, 131.2, 143.5, 158.4, 162.3, 195.3; MS (ESI): m/z 328; found 329 [M+H]^+; Anal. calcd for C\(_{18}\)H\(_{17}\)N\(_2\)O\(_2\): C, 65.75; H, 5.21; N, 8.52; found: C, 65.70; H, 5.25; N, 8.55 %.

Compound 48

White solid; Mp: 237-240°C; IR (KBr): 3355, 2332, 1623, 1342 cm\(^{-1}\); \(^1\)H NMR (DMSO-d\(_6\)) (δ, ppm): 4.43 (1H, s); 7.23 (2H, s); 7.52 (2H, d, \(J = 7.5\) Hz); 8.16 (2H, d, \(J = 7.4\) Hz); 11.11 (1H, s); 12.15 (1H, brs); \(^{13}\)C NMR (DMSO-d\(_6\)) (δ, ppm): 35.6, 57.3, 87.4, 118.7,
123.3, 128.6, 146.3, 149.4, 151.5, 152.5, 157.7, 162.4; MS (ESI): m/z 327; found: 328 [M+H]^+, Anal. calcd for C_{14}H_{9}N_{5}O_{5}: C, 51.38; H 2.77; N, 21.40; found C, 51.40; H, 2.76; N, 21.47 %.

Intermediate I

Pale Yellow solid; Mp: 104-106°C; IR (KBr): 3371, 2302,1742,1391 cm⁻¹; ¹H NMR (CDCl₃) (δ, ppm): 7.90 (1H, s); 8.09 (2H, d, J = 8.9 Hz); 8.41 (2H, d, J = 8.8 Hz); ¹³C NMR (CDCl₃) (δ, ppm): 87.5, 111.6, 112.6, 124.6, 131.3, 135.8, 150.3, 156.8; MS (ESI): m/z 199; found: 200 [M+H]^+, Anal. calcd for C_{10}H_{5}N_{3}O_{2}: C, 60.31; H, 2.53; N, 21.10; found: C, 60.24; H, 2.59; N, 21.11 %.
1H NMR spectrum of compound 4 and its expansion
13C NMR spectrum of compound 4
1H NMR spectrum of compound 26 and its expansion
13C NMR spectrum of compound 26
1H NMR spectrum of compound 29 and its expansion
13C NMR spectrum of compound 29
1H NMR spectrum of compound 34
13C NMR spectrum of compound 34
1H NMR spectrum of compound 40 and its expansion
13C NMR spectrum of compound 40
1H NMR spectrum of compound 46 and its expansion
13C NMR spectrum of compound 46
H NMR spectrum of compound 47
13C NMR spectrum of compound 47
1H NMR spectrum of compound 48
13C NMR spectrum of compound 48
1H NMR spectrum of Intermediate I
13C NMR spectrum of Intermediate I
UV spectrum of 4-Nitrobenzaldehyde (1) in (Solvent: methanol; Conc. 1.0 x 10^{-4} mol/L)

UV spectrum of 4-Hydroxy coumarin (3) in (Solvent: ethanol; Conc. 1.0 x 10^{-4} mol/L)
UV spectrum of 4-Tolualdehyde (8) (Solvent: ethanol; Conc. 2.5×10^{-5} mol/L)

UV spectrum of 4-Chlorobenzaldehyde (15) (Solvent: methanol; Conc. 1.25×10^{-4} mol/L)
UV spectrum of Dimedone (44) in methanol (Conc. 5.0 x 10^{-5} mol/L)

UV spectrum of Barbituric acid (45) in water (Conc. 1.25 x 10^{-4} mol/L)
Table S1. Melting point chart for the remaining dihydropyrano[2,3-c]chromenes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Dihydropyrano[2,3-c]chromene</th>
<th>M.P. (°C) Observed</th>
<th>M.P. (°C) Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>269-272</td>
<td>268-270 21b</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>255-257</td>
<td>258-259 19</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>247-250</td>
<td>246-248 21b</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>248-250</td>
<td>246-248<sup>9</sup></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>258-260</td>
<td>257-259<sup>19</sup></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>245-248</td>
<td>247-249<sup>21b</sup></td>
</tr>
<tr>
<td>7</td>
<td>[\text{![Image of compound 31]}]</td>
<td>263-266</td>
<td>266-267 24</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>[\text{![Image of compound 32]}]</td>
<td>265-267</td>
<td>266-268 23</td>
</tr>
<tr>
<td>9</td>
<td>[\text{![Image of compound 33]}]</td>
<td>250-254</td>
<td>252–255 21b</td>
</tr>
<tr>
<td>10</td>
<td>[\text{![Image of compound 34]}]</td>
<td>246-248</td>
<td>247-249 9</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>
| 11| ![Image](image1)
| | | | | |
| 12| ![Image](image2)
| | | | | |
| 13| ![Image](image3)
<p>| | | | | |
| | | | | |</p>
<table>
<thead>
<tr>
<th>14</th>
<th>![Image of compound 39]</th>
<th>250-253</th>
<th>252-254<sup>21a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>![Image of compound 41]</td>
<td>200-203</td>
<td>202-203<sup>23</sup></td>
</tr>
<tr>
<td>16</td>
<td>![Image of compound 42]</td>
<td>189-190</td>
<td>191-192<sup>23</sup></td>
</tr>
</tbody>
</table>

References

