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Materials and Methods.

All of the starting materials and reagents are commercially available and used as received. 1H
NMR spectra were recorded at 600 and 500 MHz, 13C NMR spectra were recorded at 150 and
125 MHz. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the 1H

NMR spectrum as 0.00 ppm (chloroform, 7.26 ppm; dimethyl sulfoxide-ds 2.50 ppm,

acetonitrile-ds, 1.93 ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet,

d = doublet, t = triplet, quin = quintuplet, sex = sextet and br = broad), coupling constant (J

values) in Hz and integration. Chemical shifts for 1':)’C NMR spectra were recorded in ppm from
tetramethylsilane using the central peak of CDCls (77.0 ppm), dimethyl sulfoxide (39.5 ppm) and

methanol (49.0 ppm) as the internal standard. Accurate mass (HRMS) were determined by
electronic impact (EI-TOF). Flash column chromatography was performed using silica gel, 60 A and
0.2-0.5 mm with the indicated solvent system according to standard techniques. Compounds were
visualized on TLC plates by use of UV light, or vanillin with acetic and sulfuric acid in ethanol with
heating. All the solvents were treated according to general methods. Gallic acid and tannic acid

from ALDRICH were used. NaHCOs BioXtra, 99.5-100.5% from ALDRICH was

. 1 1
employed. For detection of peroxymonocarbonate by NMR, NaH 3C03 98 atom % 3C from

ALDRICH was employed. Reactions were performed protected from light. Anhydrous

magnesium sulfate was used for drying solutions.
General Remarks.

Procedure with gallic acid:

To a mixture of gallic acid (0.275 mmol) and boronic acid (0.5 mmol) in ethanol (2 ml), was

added a 1M aqueous solution of NaHCOs (2ml). The reaction was stirred open-flask at room

temperature until the starting material disappeared. The progress of the reaction was

monitored by TLC. The reaction mixture was poured into saturated aqueous NH4Cl (10 mL,

saturated solution) and extracted with ethyl acetate (3 x 10 mL). The combined extract was
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over anhydrous MgSOas. After evaporation of the solvent under reduced pressure, the residue

was chromatographed by silica gel to obtain the desired products.

Procedure with tannic acid:

To a mixture of tannic acid (0.11 mmol) and boronic acid (0.5 mmol) in ethanol (2 ml), was

added a 1M aqueous solution of NaHCOs (2ml). The reaction was stirred open-flask at room

temperature until the starting material disappeared. The progress of the reaction was

monitored by TLC. The reaction mixture was poured into saturated aqueous NH4Cl (10 mL,
saturated solution) and extracted with ethyl acetate (3 x 10 mL). The combined extract was dried
over anhydrous MgSOa. After evaporation of the solvent under reduced pressure, the residue

was chromatographed by silica gel to obtain the desired products.

Procedure with grape pomace extract:

Grape pomace from a local winery was employed (E. Pdez winery). The red grapes Vitis vinifera
(Listan Negro, a local cultivar) were cultivated in the Canary Islands, specifically in the north of
Tenerife (Finca Los Angostos, La Cruz Santa, Los Realejos) and harvested at the beginning of
October 2015. The grapes were pressed right after the harvest and left in contact with the grape
juice for one week, while fermentation was going on. Grape seeds and skins were pressed and
dried at air for two days. The grape pomace was left with ethanol/water/HCl (37%) (7:2.9:0.1) (3ml
per g of pomace), for 3 days, and then filtered. To 2ml of such extract, boronic acid was added
(0.1mmol), and finally 2ml of 1M solution of sodium bicarbonate (2 ml) was added and the reaction
was stirred under air for 24h. The progress of the reaction was monitored by TLC. The reaction
mixture was poured into saturated aqueous NH4Cl (10 mL, saturated solution) and

extracted with ethyl acetate (3 x 10 mL). The combined extract was dried over anhydrous
MgSOa. After evaporation of the solvent under reduced pressure, the residue was

chromatographed by silica gel to obtain the desired products.
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Qualitative and Quantitative Comments on Sustainability:

Substitution of conventional chemical reagents for bio-waste extract implies economic and
environmental advantages. In fact, employment of chemicals extracted from renewable sources is
one of the paradigms of sustainability, particularly in this case, where just a solid- liquid extraction

with ethanol is performed. Additionally, elimination of hydrogen peroxide from

. . . . . 1 .
industrial synthetic processes is usually desirable,” because hydrogen peroxide causes burns

on contact with skin and is a fire and transportation hazard especially in contact with organic
materials. Moreover, while the “greenness” of the oxidation reaction might be similar when

H20: or grape pomace is employed, industrial generation of hydrogen peroxide is by far a more

problematic process than the generation of grape pomace. Therefore, a global qualitative

evaluation of both processes favours the grape pomace choice.

In order to quantify the sustainability, we have applied the EcoScaIe,2 to the oxidation of 4-

tertbutyl phenylboronic acid with gallic acid, tannic acid and with grape pomace. In all cases, the

excellent value obtained (> 91 in all cases) prove the high sustainability of this methodology.

EcoScale value
Gallic acid Tannic acid Grape Pomace Extract
95 93 91.5
185 | abelli . ;

Phenylboronic acid (0.5 mmol) and gallic acid (0.275 mmol) in a 1:1 mixture of solvents (1M

. . 1
solution NaHCOs/EtOH) were stirred at room temperature under 802 atmosphere. The progress

of the reaction was monitored by TLC, until the starting material disappeared. The mixture was

poured into saturated aqueous NH4Cl (10 mL, saturated solution) and extracted with ethyl

acetate (3 x 10 mL). The combined extract was dried over anhydrous MgSQa. After evaporation
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of the solvent under reduced pressure, the residue was chromatographed by silica gel to

obtain the desired product 2i’.
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Figure S1. HRMS of compound 2i’.

Small amounts of 16O-phenol are detected, but we consider it a consequence of partial reaction
with atmospheric oxygen instead of 1802, either due to an inadequate reaction time or to small
16 . . . . 16
amounts of ~"02 present in the reaction mixture. Indeed, scrambling between ~ O-phenol and
18 . .o 18 . Y
02 was discarded by stirring the phenol under a = 02 atmosphere in the same conditions

than the oxidation: No scrambling was observed.
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Characterization of Products.

4-tertbutylphenol (2a). 1H NMR (600 MHz, CDCls, 298 K): 6 ppm 6.82 (d, 2H, J = 8.4 Hz), 5.11 (br,
1H), 1.33 (s, 9H); B3¢ NMR (125 MHz, CDCls, 298 K): 6 ppm 153.1, 143.6, 126.5, 114.8, 34.1, 31.6;

HRMS (El): m/z: calcd for: CioH130 [M — 1H+]: 149.0966; found: 149.0969.

4-methoxyphenol (2b). 1H NMR (500 MHz, CDCls, 298 K): 6 ppm 6.81-6.77 (m, 4H), 5.45 (br, 1H),
3.77 (s, 3H); 13'C NMR (125 MHz, CDCls, 298 K): 6 ppm 153.5, 149.7, 116.3, 115.1, 56.0; HRMS

(E1): m/z: calcd for C7Hs0: [M+]: 124.0524, found: 124.0522.

4-(methylmercapto)phenol (2c).1H NMR (500 MHz, CDCls, 298 K): 6 ppm 7.21 (d, J = 8.2 Hz, 2H),
6.78 (d, J = 8.2 Hz, 2H), 5.27 (br, 1H), 2.44 (s, 3H). °C NMR (125 MHz, CDCls, 298 K): § ppm 154.1,

130.4,128.9, 116.1, 18.1; HRMS (El): m/z: calcd for C7HsOS [M+]: 140.0296; found: 140.0298.

2-bromophenol (2d). *H NMR (500 MHz, CDCls, 298 K): & ppm 7.45 (dd, J1 = 1.1; J> = 8.0 Hz, 1H),
7.24-7.21 (m, 1H), 7.02 (dd, 1 = 1.1; J> = 8.0 Hz, 1H) 5.49 (br, 1H); ->C NMR (125 MHz, CDCls, 298
K): 6 ppm 152.3, 132.0, 129.2, 121.8, 116.1, 110.3; HRMS (EI): m/z: calcd for CeHs0%'Br [M]:

173.9503; found: 173.9503; calcd for C6H507gBr [M+]: 171.9524; found: 171.9524;

4-hydroxyacetophenone (2e). 'H NMR (500 MHz, CDCls, 298 K): 6 ppm 7.91 (d, J = 8.5 Hz, 2H),
6.88 (d, J = 8.5 Hz, 2H), 5.56 (br, 1H), 2.56 (s, 3H); >>C NMR (125 MHz, CDCls, 298 K): & ppm 198.8,

161.6, 131.2, 129.5, 115.6, 26.3; HRMS (El): m/z: calcd for CsHsO: [M+]: 136.0524, found:

136.0522.

2-cyanophenol (2f). 1H NMR (500 MHz, CDCls, 298 K): 6 ppm 7.50-7.44 (m, 2H), 7.03 (d, /= 8.3
Hz, 1H), 6.96 (t, J = 7.7 Hz, 1H), 6.46 (br, 1H); ->C NMR (125 MHz, CDCls, 298 K): & ppm 159.0,

134.8,133.0, 120.8, 116.7, 116.6, 99.3; HRMS (EI): m/z: calcd for C7HsNO [M+]: 119.0371; found:

119.0373.
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2, 6-dimethylphenol (2g). 1H NMR (500 MHz, CDCls, 298 K): 6 ppm 7.00 (d, J = 7.5 Hz, 2H), 6.78
(t, J = 7.5 Hz, 1H), 4.63 (br, 1H), 2.27 (s, 6H); ->C NMR (125 MHz, CDCls, 298 K): & ppm 152.2,

128.6, 123.0, 120.2, 15.8; HRMS (El): m/z: calcd for CsH100 [M+] :122.0732; found: 122.0732.

4-fluorophenol (2h). *H NMR (500 MHz, CDCls, 298 K): § ppm 6.92 (t, J = 8.4 Hz, 2H), 6.79-6.76
(m, 2H), 5.15 (br, 1H); >C NMR (125 MHz, CDCls, 298 K): & ppm 158.2, 156.4, 151.5, 151.5, 116.3,

116.2, 116.1, 115.8; HRMS (El): m/z: calcd for CsHsOF [M+]: 112.0324, found: 112.0329.

Phenol (2i). *H NMR (500 MHz, CDCls, 298 K): § ppm 7.19-7.16 (m, 2H), 6.86 (t, J = 7.4 Hz, 1H),
6.77-6.75 (m, 2H), 4.82 (br, 1H); °C NMR (125 MHz, CDCls, 298 K): 6 ppm 155.4, 129.7, 120.9,

115.4; HRMS (El): m/z: caled for CsHesO [M+]: 94.0419, found: 94.0415.

Hydroquinone (2j). *H NMR (500 MHz, DMSO-ds, 298 K): & ppm 6.55 (m, 4H); “3C NMR (125 MHz,
DMSO-ds, 298 K): & ppm 149.7, 115.6; HRMS (EI): m/z: calcd for CeHsO2 [M']: 110.0368; found:

110.0369.

4-butylphenol (2k). 1H NMR (500 MHz, CDCls, 298 K): 6 ppm 7.05 (d, J = 8.2 Hz, 2H), 6.76 (d, J =
8.2 Hz, 2H), 5.06 (br, 1H), 2.58 (t, J = 7.6 Hz, 2H), 1.57 (quin, J = 7.6 Hz, 2H), 1.36 (sex, J = 7.3 Hz,
2H), 0.93 (t, J = 7.3, 3H); ->C NMR (125 MHz, CDCs, 298 K): & ppm 153.4, 135.2, 129.5, 115.1,

34.7,33.9, 22.3, 13.9; HRMS (El): m/z: calcd for CioH120 [M+]: 150.1045; found: 152.1039.

1-decanol (21). *H NMR (600 MHz, CDCls, 298 K): & ppm 3.61 (t, 2H, J = 6.7 Hz), 1.74 (br, 1H), 1.56-

1.51 (m, 2H), 1.34-1.25 (m, 14H), 0.86 (t, 3H, J = 6.7 Hz); °C NMR (125 MHz, CDCls, 298 K): & ppm

63.0, 32.8, 31.9, 29.6, 29.5, 29.4, 29.3, 25.7, 22.6, 14.0.

3-hydroxypyridine (2m). 1H NMR (600 MHz, CDsOD, 298 K): 6 ppm 8.10 (s, 1H), 8.01 (d, 1H, J =
1.8 Hz), 7.26 (s, 2H), 5.08 (br, 1H); “>C NMR (125 MHz, CDs0D, 298 K): & ppm 154.6, 139.4, 136.8,

124.5, 123.1; HRMS (El): m/z: calcd for: CsHsO [M — 1H+]: 94.0293; found: 94.0295.
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4-hydroxybenzoic acid (2n). 1H NMR (600 MHz, DMSO-ds, 298 K): § ppm 7.79 (d, 2H, J = 8.4 Hz),

6.83 (d, 2H, J = 8.4 Hz), 3.41 (br, 1H); -°C NMR (125 MHz, DMSO-d6, 298 K): & ppm 167.6,

162.1,132.0, 121.8, 115.6.
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NMR Spectra
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