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Figure S1. Simulations demonstrating differences in model selection and parameter
estimation of Bayesian HMM in SAPHIRE versus GMM under varying degrees of state
discriminability.

(A) Two bivariate Gaussian states (blue and pink) with equal variances along x and y (left panel)
were used to create temporal trajectories with a single state transition. In practice, the states are
unknown and must be inferred from a time series cellular trajectory of coordinates (right panel).
State circles represent one and two true standard deviations from the mean (circle centers) and
points are random samples drawn from the states. Simulated trajectories of different lengths
(different number of samples drawn from the states) and varying resolvability of the states (how
well separated the states are, du /o) are shown. (B) Comparison between Bayesian HMM and

GMM ability to infer the correct 2-state model (versus a 1-state, or 3-state model) as a function of
how well separated the two states are (du / o) for different trajectory lengths. Here, du is the

Euclidean distance between the means (centers) of the two states and o is the standard
deviation of each state, set to be the same for the two states in the simulations. Error bars
represent +/- standard error of the mean for 20 state-drawn samples for each du /o . Inclusion

of temporal information in the true 2-state trajectories enables the Bayesian HMM in SAPHIRE to
infer the correct 2-state model with higher probability (purple curve) compared to GMM with
expectation maximization (green curve), which does not take temporal information of the
trajectory into account. For both the Bayesian HMM and GMM inference methods, longer
trajectories and larger separation of underlying states improved inference of the correct 2-state
model. (C) The percent error in inferred state means for the Bayesian HMM and GMM. Cumulative

percent error in the state means was calculated as 1OOZ(I ey N Ve /N I)/é‘,u where

s, is the actual (true) state (two states in these simulations), |- | denotes absolute value, and s,

is the inferred state closest to the true state s, for all 2-state inferred models, regardless of
whether they are the most probable model or not.
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Figure S2. Gaussian mixture modeling (GMM) with full covariance matrix specification
leads to state under-fitting and undesirable grouping of diverse morphologies into the
same state.

Three examples of individual cell shape trajectories from the expanded drug panel imaging
experiment modelled with SAPHIRE to derive annotated underlying shape state sequences from
PCA shape-space trajectories (a). The same cell shapes over time are classified into groups using
GMM with a diagonal, equal-variance constraint for the covariance matrix (b) or full covariance
matrix (c), with BIC used for the GMMs to find the most probable shape state model for each cell
trajectory individually, independent of other cells. The full covariance matrix GMM lumps cell with
heterogeneous morphologies (e.g., rounder, elongated, branched) into similar groups, showing
that Gaussian states with diagonal, equal variances (circles as opposed to ellipses) better resolve
and describe the underlying morphological states of MDA-MB-231 cells in shape-space.
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Figure S3. Probabilistic time series modeling using SAPHIRE better resolves cell shape
states compared to GMM when cells progressively explore shape-space over time.

Three PCA shape-space cell trajectories are shown, with annotation with the most likely shape
state model and state sequence using SAPHIRE (a), and GMM using diagonal, equal-variance
constraint on the covariance matrix (b) or full covariance matrix (¢) using BIC to select the most
likely model for the GMMs. The cells shown generally move through shape-space continuously in
particular directions over time (e.g., left to right for the first cell in the upper panel), with SAPHIRE
able to capture these states and state transitions, whereas the GMM is unable to resolve them.
This is consistent with numerical simulations (Fig. S1) showing that time series information taken
into account by SAPHIRE, which is neglected by the GMM, is better able to resolve, model, and
annotate the underlying temporal shape state behavior of individual cells. The inability to properly
resolve and capture shape states by GMM leads to under-fitting of the number of states and
improper grouping of morphologically dissimilar shapes into the same state.
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Figure S4. Examples of cells with similar SAPHIRE and GMM shape state annotations.
Cell trajectories in shape-space were annotated with the most likely shape state model and state
sequence using Bayesian HMM (a), and GMM using diagonal, equal-variance constraint on the
covariance matrix (b) or full covariance matrix (c¢). For the GMMs, the BIC was used to select the
most likely state model. When a cell moves progressively through shape-space over time and
resides in well-separated shape-space regions (early time in black and later time in gray/white in
left panels), Bayesian HMM and GMM categorize morphologies using the same number of states,
with state transitions (blue to red) found to occur at similar points in time.
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Figure S5

Figure S5. Effects of treatments on the number of morphological states explored by cells.
Percentage of individual cells with given numbers of explored shape states as inferred from the
SAPHIRE probabilistic models across different treatment conditions for the two imaging
experiments. Modeling was applied separately for each temporal shape-space trajectory to infer
the a priori unknown number of hidden shape states explored by each cell.

10



A

AZ (10uM) ML7 (20uM) BB (5uM) GEF (1uM)
0 15 0 15 % 15 0 15
120 60 120 60 120 60 120 60
1 1 1 1
150 30 150 30 150 30 150 30
05 05 05 5
180 0 180 0 180 180 0
210 330 210 33 210 0 210 330
240 300 240 300 240 300 240 300
270 270 270 270
PDO3 (1uM) Y2 (5uM) PD15 (10uM)
90 15 90 15 Q0 15
120 120 60 120 T o 0.4 08
1 ! 1 29 T
150 30 150 ol 30 150 D, 30 o o 03 29
0.5 X \ 2 £ = <
) = T
n Q © <
180 0 180 T0 180 o g2 02 5%
3.6 5] 2 8 £ —]
- £ a9 —]
5 col for §8
210 330 210 30 210 30 §E 58
=" =g
©
240 300 240 300 240 300 0
270 270 270
B AZ (10uM) ML7 (20uM) BB (5uM) GEF (1uM)
0 25 0 25 20 25 0 25
120 5 60 120 5 60 120 5 60 120 5 60
15 15 15 15
150 1 30 150 p 30 150 3 30 150 1 30
05 05 05 05
180 0 180 0 180 0 180 0
210 330 210 330 210 330 210 330
240 300 240 300 240 300 240 300
270 270 270 270
PDO3 (1uM) Y2 (5uM) PD15 (10uM)
0 25 20 25 0 25 c
120 5 60 120 5 60 120 5 60 S
) 0.2 ©
15 15 15 2 g 3
150 1 30 15 4 30 150 1 30 8.5 o3
5= = 2
05 2 05 05 2% 015 7§ <
© o ©
180 0 18 0 180 % 0 @ ° o1 = £ <|
) . =
%% g5 ]
o o ‘n <
210 330 210 30 210 30 S E 005 g2
© @
5 £
240 300 240 300 240 300 = 0
270 270 270
Figure S6

Figure S6. Phenotypic comparisons of an expanded panel of drugs that target
actomyosin-regulatory proteins using model-annotated profiles of cell shape dynamics.
(A) Effects of the expanded panel of drugs targeting various molecular species involved in
regulating actomyosin dynamics on model-inferred cellular shape state locations in polar shape-
space (as in Fig. 5B). (B) Effects of the expanded panel of drugs on cellular state transitions in
shape-space (as in Fig. 5C).
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Table S1

List and descriptions of image-derived cell shape features
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17

18

Area

Perimeter
Equivalent
Diameter
Major Axis

Length
Minor Axis

Length

Eccentricity
Solidity

Extent
Convex Area
Axis Ratio
Circularity

Waviness

Geodesic
Diameter

Convex
Perimeter

Feret Max

Feret Min

Feret Mean

Feret CV

Number of pixels in the cell region.
Length of the cell region’s boundary.

The diameter of a circle that has the same area as in the cell region.

Length of major axis of an ellipse that has the same normalized second
central moments as the cell region.

Length of the minor axis of an ellipse that has the same normalized
second central moments as the cell region.

The eccentricity of an ellipse that has the same second moments as the
cell region.

The ratio of the area of the cell region to the area of cell region’s convex
hull.

The ratio of the area of the cell region to the area of cell region’s
bounding box.

The area of the convex hull of the cell region.

The ratio of the major axis length to the minor axis length of the cell
region.

For the cell region, computed as: (4*m*Perimeter) / (Area?)

The ratio of the perimeter of the cell region’s convex hull to the perimeter
of the cell region.

The length of the longest geodesic path between all pairs of points on
the boundary of the cell region. A geodesic path is the shortest path that
connects two points on the cell region boundary that cannot traverse
outside of the cell region.

Length of the cell region’s convex hull’'s boundary.

The maximum of the Feret lengths of the cell region over 180 directions
sampled uniformly 0-360 degrees. Feret length is the measure of the
cell region’s size (length) along a specified direction, as would be
measured with calipers.

The minimum of the Feret lengths of the cell region over 180 directions
sampled uniformly 0-360 degrees.

The mean of the Feret lengths of the cell region over 180 directions
sampled uniformly 0-360 degrees.

The coefficient of variation (standard deviation divided by the mean) of
Feret lengths of the cell region from 180 directions sampled uniformly
0—-360 degrees.

12



Video S1. Segmented and tracked breast cancer cells following DMSO control treatment.
MDA-MB-231 cells stably expressing LifeAct-eGFP (green) actin reporter and Histone 2B-
mCherry (pink) nuclear reporter were imaged for approximately 18 hours at 8-minute time
intervals following treatment with bolus 0.1% v/v DMSO in growth media. Image acquisition began
approximately 45 minutes post-treatment. Imaging was performed using time-lapse
epifluorescence microscopy with a 10X/0.3NA air objective on a Nikon Eclipse Ti microscope
incubated at 37°C. The video shows colored cell outlines corresponding to cell body masks along
with temporal evolution of nuclear tracks (purple lines) using automated image processing prior
to quality control/phenotype labeling with the SAPHIRE GUI tool (see Materials and Methods of
the main text). Scale bar, 40um.

Video S2. Segmented and tracked breast cancer cells following myosin Il inhibition.
MDA-MB-231 cells stably expressing LifeAct-eGFP (green) actin reporter and Histone 2B-
mCherry (pink) nuclear reporter following treatment with bolus 10uM Blebbistatin (myosin I
inhibitor) in growth media. Image acquisition, processing, and video details are identical to those
of Video S1. Scale bar, 40um.

Video S3. Segmented and tracked breast cancer cells following MLCK inhibition.
MDA-MB-231 cells stably expressing LifeAct-eGFP (green) actin reporter and Histone 2B-
mCherry (pink) nuclear reporter following treatment with bolus 10pM ML-7 (MLCK inhibitor) in
growth media. Image acquisition, processing, and video details are identical to those of Video S1.
Scale bar, 40um.
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