ELECTRONIC SUPPLEMENTARY INFORMATION

Lewisite exposure biomarkers in urine by liquid chromatography – inductively coupled plasma tandem mass spectrometry: with an accelerated matrix-matched stability study

Jason D. Palcic,*a Janet S. Jones, a E. Lindsay Flagg, a and Stephen F. Donovan^b

^a Florida Department of Health, Bureau of Public Health Laboratories, 1217 N. Pearl St, Jacksonville, FL 32202

^b NMS Labs, 3701 Welsh Rd, Willow Grove, PA 19090

* Corresponding author

Overview of the results provided in the supporting information:

- * Table S1 LC-ICP-MS instrumentation parameters as performed on the Agilent 7500ce.
- Table S2 Determination of CVAOA in urine by LC-ICP-MS (single quadrupole) accuracy using the consensus mean and standard deviation of NYS DOH PT materials (n = 17 labs).
- Table S3 Determination of CVAOA in urine by LC-ICP-MS/MS (tandem) accuracy using the consensus mean and standard deviation of NYS DOH PT materials (n = 18 labs).
- Table S4 ANOVA calculation of coefficients of variation (CV) from seven day/run, seven replicate CVAOA precision data (n = 49) on the single quadrupole instrument.
- Figure S1 Chlorine measured at m/z ³⁵Cl⁺ was chromatographically resolved from CVAOA and the AsAc internal standard by LC-ICP-MS.
- Figure S2 Comparison of least square linear regression models of the calibration curve from the single quadrupole ICP-MS (Agilent 7500ce).

HPLC	
System	Agilent 1200 Series
Column	Ascentis 5 μ m RP-amide, 100 mm \times 2.1 mm i.d.
Column temp. (°C)	30 ± 0.8
Autosampler temp. (°C)	4 ± 1
Mobile phase (isocratic)	11.5 mM TBAH, 5 mM succinic acid, 2% IPA, pH 5.5
Mobile phase flow rate (mL/min)	1.0
Injection volume (µL)	10
ICP-MS	
System	Agilent 7500ce
RF power (W)	1500
Plasma gas flow rate (L/min)	15.0
Auxiliary gas flow rate (L/min)	0.90
Nebulizer gas flow rate (L/min)	0.85
Makeup gas flow rate (L/min)	0.15
Nebulizer	Concentric Micromist (Glass Expansion, Pocasset, MA)
Spray Chamber temp. (°C)	2
Ion lens voltages	Optimized daily
Cell entrance (V)	-22
Cell exit (V)	-22
Octopole bias (V)	-6
Kinetic energy discrimination (V)	+3
Integration time (s)	0.3
Isotopes monitored (scan type)	⁷⁵ As ⁺ (time-resolved analysis)
	$^{76}\text{Ar}_2^+$ (is necessary to list as an internal standard;
	however, the internal standard correction is deselected)
Acquisition time (min)	5
Repetition	1

 Table S1 LC-ICP-MS instrumentation parameters as performed on the Agilent 7500ce.

Table S2 Determination of CVAOA in urine by LC-ICP-MS (single quadrupole) accuracy using					
the consensus mean and standard deviation of NYS DOH PT materials (n = 17 labs)					
Sample ID	Reported	Z-Score	Consensus	Consensus	Bias (%)
-	Value (µg/L)		Mean (µg/L)	SD (µg/L)	. ,
LW1401-01-12	ND	-	ND	-	-
LW1401-02-12	72.2	0.28	70	8.0	+3.1
LW1401-03-12	124	0.25	121	12.2	+2.5
LW1401-04-12	161	0.14	159	14.8	+1.3
LW1401-05-12	330	0.45	313	37.4	+5.4
LW1401-06-12	419	0.15	411	52.9	+1.9
LW1401-07-12	904	0.24	876	115	+3.2
LW1401-08-12	1260	0.17	1230	173	+2.4
LW1401-09-12	1670	0.12	1640	253	+1.8
LW1401-10-12	2770	-0.04	2790	478	-0.7

Table S2 Date nination CVAOA in uring by I C ICD MS (gingle d٣ a_{a}

Table S3 Determination of CVAOA in urine by LC-ICP-MS/MS (tandem) accuracy using the consensus mean and standard deviation of NYS DOH PT materials (n = 18 labs)

Sample ID	Reported Value (µg/L)	Z-Score	Consensus Mean (µg/L)	Consensus SD (µg/L)	Bias (%)
LW1402-11-10	ND	-	ND	-	-
LW1402-12-10	36.5*	-0.01	36.6	9.30	-0.3
LW1402-13-10	93.9	0.08	92.5	16.5	+1.5
LW1402-14-10	162	0.00	162	10.1	0.0
LW1402-15-10	273	0.12	270	24.4	+1.1
LW1402-16-10	348	0.23	343	21.3	+1.5
LW1402-17-10	788	-0.04	790	52.9	-0.3
LW1402-18-10	1220	0.13	1200	149	+1.7
LW1402-19-10	1570	0.00	1570	116	0.0
LW1402-20-10	2860	0.17	2810	297	+1.8
LW1403-21-12	ND	-	ND	-	-
LW1403-22-12	47.1*	-0.32	50.7	11.1	-7.1
LW1403-23-12	65.8	0.13	64.8	7.54	+1.5
LW1403-24-12	145	0.07	144	14.0	+0.7
LW1403-25-12	235	-0.06	236	17.3	-0.4
LW1403-26-12	248	-0.21	252	19.0	-1.6
LW1403-27-12	678	0.36	661	47.4	+2.6
LW1403-28-12	1170	0.46	1122	105	+4.3
LW1403-29-12	1260	0.40	1225	87.8	+2.9
LW1403-30-12	2210	0.21	2178	151	+1.5

* Reported as present below the lowest calibrator (PLC).

Table 54 Three vir calculation of coefficients of variation (CV) noin seven day/run, seven						
replicate CVAOA precision data ($n = 49$) on the single quadrupole instrument						
Level	Grand	Grand SD	Grand CV	Within	Between	Intermediate
	Mean	(µg/L)	(%)	day/run CV	day/run CV	CV (%)
	(µg/L)			(%)	(%)	
QL	105	4.16	3.9	1.6	3.9	4.2
QM	842	41.7	4.9	2.2	4.8	5.2
QM	3359	149	4.4	1.9	4.3	4.7

Table S4 ANOVA calculation of coefficients of variation (CV) from seven day/run seven

Figure S1 Chlorine measured at m/z ³⁵Cl⁺ was chromatographically resolved from CVAOA and the AsAc surrogate internal standard by LC-ICP-MS. The abundance of chlorine was divided by a hundred-fold to bring onto scale of m/z ⁷⁵As detection for the QH sample. Therefore analysis on single quadrupole instruments without a reaction/collision gas did not hinder quantitative analysis of CVAOA. However, chlorine was not chromatographically resolved from the tentatively assigned gem-CVAOA isomer and should not be integrated with single quadrupole ICP-MS (cell evacuated), because of the potential ⁴⁰Ar³⁵Cl⁺ polyatomic interference.

Figure S2 Comparison of least square linear regression models for the calibration range obtained using a single quadrupole ICP-MS (Agilent 7500ce). The coefficient of variation was plotted (logarithmic scale) for each standard reprocessed using three least squares linear regression models; ordinary least squares (\circ , OLS), inverse of concentration weighted least squares (\Box , WLS 1/x), and inverse of the square of concentration weighted least squares (\blacktriangle , WLS 1/x2). The concentrations were calculated from the standards area response ratio (CVAOA/AsAc), slope, and intercept obtained from the daily calibration curve (n = 20).