I. SWEEPING LOW VALUES OF THE DISPLACEMENT DECAY COEFFICIENT

In Fig. 1 we show a semilogarithmic plot of the convergence parameter C, as given in Eq. (21), for low values of the displacement decay coefficient C_d. Notice that the field solutions differ only by 4-7% in the most extreme case of $C_d = 0$.

![Graph showing convergence parameter C vs. decay coefficient C_d with markers representing different values of C and C_{12}.

FIG. 1. Semilogarithmic plot of the convergence parameter C, as given in Eq. (21), for low values of the displacement decay coefficient C_d.](image)

II. ACOUSTIC RADIATION FORCE FIELD

In Fig. 2 we show the acoustic radiation force field F_{rad}, see Eq. (15). Panel (a) shows the force field in the bulk of the microchannel whereas panel (b) shows the force field within a 0.4-μm slab near the bottom actuated boundary. The arrows indicate the force direction and the colors indicate the force magnitude from 0 (blue) to maximum (red). The maximum radiation force magnitude is 80 fN for 1-μm particles, 5.1 pN for 4-μm particles, 41 pN for 8-μm particles, 80 pN for 10-μm particles, and 640 pN for 20-μm particles.

![Acoustic radiation force field showing force magnitude and direction in the bulk and near the boundary.](image)

FIG. 2. Acoustic radiation force field (a) in the bulk of the microchannel and (b) within a 0.4-μm slab near the bottom actuated boundary. The arrows indicate the force direction and the colors indicate the force magnitude from 0 (blue) to maximum (yellow).