Mechanical differences of sickle cell trait (SCT) and normal red blood cells

Yi Zheng1,2, Mark A. Cachia,1 Ji Ge1, Zhensong Xu1, Chen Wang4,5,*, and Yu Sun1,2,3,*

1Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
2Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
3Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
4Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
5Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada

*Corresponding authors:

Yu Sun
E-mail: sun@mie.utoronto.ca
Tel: 1-416-946-0549
Fax: 1-416-978-7753

Chen Wang
E-mail: cwang@mtsinai.on.ca
Tel: 1-416-586-4469
Supplementary Figure 1: Oxygen diffusion validation. (a) Tris (4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride complex dissolved in PBS was injected into the central channel of the device. Luminescent intensity was measured under illumination at 488 nm. (b) Gray-level intensity of an area (20 µm × 20 µm) near the midline of the central channel was analyzed via image processing. At 0 s, air (20% O₂ + 80% N₂) was switched to N₂. Luminescence saturated after around 200 seconds.