Electronic Supplementary Material (ESI) for Lab on a Chip This journal is © The Royal Society of Chemistry 2015

SUPPLEMENTARY MATERIAL

Integration of a microfluidic chip with a size-based cell bandpass filter for reliable isolation of single cells

Hojin Kim,^a Sanghyun Lee,^a Jaehyung Lee^b and Joonwon Kim*^a

^aDepartment of Mechanical Engineering Pohang University of Science and Technology, San 31, Pohang, Kyungbuk 790-784, Republic of Korea

^bStratio, Inc., 998 Hamilton Ave., Menlo Park, CA 94025

1. The design and dimensions of the microfluidic array chip for single cell isolation.

(a) Design and dimensions of the on-chip pre-filter with a cut-off size of $30 \,\mu m$.

Electronic Supplementary Material (ESI) for Lab on a Chip This journal is © The Royal Society of Chemistry 2015

(b) The design and dimensions of the cell-trapping site.

As mentioned in the main text, the cell-trapping site is composed of the cell trap region with a flow fraction-based hydrodynamic filtering network (i.e., flow fraction-based cell filter). To provide the details of the design process and as a guideline for researchers who are interested in single-cell isolation, each step in the process is given below.

i) Step 1: Determination of the cut-off size and the channel height

The cut-off size (i.e., the space between the pillars of the pre-filter) and the channel height were designed to be 30 μ m each, based on the size distribution of these cells, to prevent channel clogging by influent cells (see Fig. S1 below).

Fig. S1 Size distribution profiles of 3T3-J2 and MC3T3-E1 cell lines

ii) Step 2: Determination of a band range (i.e., the cut-off size and the cut-on size)

The cut-on size [i.e., theoretically twice the width (w_b) of the stream entering the bypass channels in the flow fraction network (see, Fig. 1c of the revised manuscript)] was designed to be 0, 16, or 18 µm, in order to investigate the effects of influent cell size on single-cell trapping performance (i.e., trapping efficiency). Therefore, the band range was designed to be 0–30 µm, 16–30 µm, and 18–30 µm, respectively. Note that a microfluidic chip with a band range of 0–30 µm consists of an on-chip pre-filter and a cell trap region without a flow fraction-based filter.

iii) Step 3: Design of a cell trap

 W_T , W_{TI} , L_{TI} , and L_T of a cell trap (see Fig. A below) were designed to accommodate a single cell and to create large differences in the hydraulic resistances of a cell trap upon capturing of a cell. Dimensions (i.e., W_T , W_{TI} , L_{TI} , and L_T) of the cell trap should thus be similar to the cell size. In the cell trap, the length of the bypass channel (i.e., the sum of L_{TB2} , L_T , and L_{TB3}), which regulates the width ($w_{t,b}$) of the stream in an empty trap, was designed for a $w_{t,b}$ of 21 µm, allowing cells to efficiently enter the cell trap [i.e., $r_{cell,min} > W_M - w_{t,b}$ (as shown in Fig. 1c of the manuscript), where $r_{cell,min}$ is 9 µm for a band range of 18–30 µm and the width (W_M) of the main channel is 30 µm]. Using a hydraulic-electric circuit analogy, the bypass channel length was designed to be 413 µm [see our previous work to determine flow division (i.e., the ratio of the bypassing flow rate to the main flow rate) at the branch point].¹ Next, 20 cell traps were arranged sequentially, based on the field of view of a charge-coupled device (CCD). Short lengths of L_{TB1} , L_{TB4} , and L_{G1} were designed to minimize the hydraulic resistance.

Fig. A Enlarged views of the cell-trapping site

iv) Step 4: Determination of the dimensions of bypass channels in the flow fraction network

To determine the widths and the lengths of bypass channels corresponding to a w_b of 8 or 9 μ m (i.e., band ranges of 16–30 and 18–30 μ m, respectively), the electric circuit analogy shown below was applied.² The proposed cell-trapping site can be replaced by an equivalent electric circuit (see Fig. B below).

Fig. B Equivalent electric circuit of the cell-trapping site

Assuming that the velocity profile is a two-dimensional parabola [note that the velocity profile can be assumed to be a two-dimensional parabola if the aspect ratio of the channel height (*H*) to width (W_M) is larger than ~1],³ the Q_{tn}/Q_{Bn} ratio (n = 1, 2, ..., 10) can be replaced as follows:¹

$$\frac{Q_{tn}}{Q_{Bn}} = \left(\frac{1}{3\left(\frac{w_b}{w_M}\right)^2 - 2\left(\frac{w_b}{w_M}\right)^3}\right)$$
(eqn. S1)

Therefore, to obtain the desirable w_b of 8 and 9 µm, the Q_{tn}/Q_{Bn} ratio should be ~5.70 and ~4.63, respectively. The value of R_{trap_total} can be calculated using equation S2 to determine the hydraulic resistance of cell traps with a rectangular cross-sectional shape, because the dimensions (i.e., width and the length) of the cell trap region are given above in Step 3.

$$R_B = \frac{f_{Re} \times \mu \times L_B}{2D_h^2 \times A_B}$$
(eqn. S2)

Electronic Supplementary Material (ESI) for Lab on a Chip This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2015

where f_{Re} is the laminar friction constant, L_B is the bypass channel length, D_h is the hydraulic diameter, and A_B is the channel cross-sectional area. The mathematical definitions of f_{Re} , D_h , and A_B were given in our previous work.¹ Next, the hydraulic resistance R_{Bn} (n = 2, 3, ..., 10) can be expressed by the following recurrence formula (equation S3) through hydraulic analogy to Kirchhoff's voltage law (KVL):

$$R_{Bn} = \left(\frac{Q_{tn}}{Q_{Bn}} - 1\right) \left(R_n + 2R_g\right), \qquad R_{B1} = \left(\frac{Q_{tn}}{Q_{Bn}} - 1\right) R_{trap_total}$$
(eqn. S3)

where R_{Bn} is the hydraulic resistance of a bypass channel, R_g is the hydraulic resistance of a gap channel, and $R_1 = R_{B1} \| R_{trap_total}$, $R_2 = R_{B2} \| (R_1 + 2R_g)$, $R_3 = R_{B3} \| (R_2 + 2R_g)$, ..., $R_{10} = R_{B10} \| (R_9 + 2R_g)$ [note that symbol "I" indicates a shorthand notation for a parallel combination of electric resistors]. The equivalent hydraulic resistance R_n (n = 2, 3, ..., 10) can then be expressed as follows:

$$R_{n} = \frac{R_{Bn}(R_{n-1} + 2R_{g})}{R_{n-1} + 2R_{g} + R_{Bn}}, \qquad R_{1} = \frac{R_{B1}R_{trap_total}}{R_{B1} + R_{trap_total}}$$
(eqn. S4)

By solving equations S3 and S4 simultaneously, the value of R_{Bn} can be calculated. Finally, the widths and lengths of bypass channels can be determined using equation S2. Below, the dimensions of cell-trapping sites required to achieve a band range of 18–30 µm are provided.

	Width [µm]	Length [µm]			Length [µm]
M (main channel)	30	-		L _{TB1}	60
B1 (bypass channel)	20	9944		L _{TB2}	187
B2	20	8075		L _{TB3}	198
B3	20	6610		L _{TB4}	71
B4	18	2200		L _T	28
	20	2663			
B5	20	2200		L_{G}	100
	22	2999			
B6	22	1700		L_{G1}	100
	24	3839			
B 7	24	1530]	W _T	30
	26	4243			
B8	28	6231		W_{T1}	8
B9	30	4000		L _{T1}	2
	32	2607			3
B10	32	2000	1		
	34	4987	1		

Electronic Supplementary Material (ESI) for Lab on a Chip This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2015

2. A video (Movie1) showing the filtering of smaller-sized beads (measuring 15 μm in diameter) and the sequential trapping of larger-sized beads (measuring 25 μm in diameter).

Electronic Supplementary Material (ESI) for Lab on a Chip This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2015

References

- 1. H. Kim and J. Kim, *Microfluidics and Nanofluidics*, 2014, 16, 623-633.
- 2. M. Yamada and M. Seki, *Lab on a Chip*, 2005, **5**, 1233-1239.
- 3. G. B. Lee, C. C. Chang, S. B. Huang and R. J. Yang, Journal of Micromechanics and Microengineering, 2006, 16, 1024-1032.