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Supporting figure legends

Figure S1. Model behavior with and without delays. (A) Model outputs are shown for continuous
LPS = 1000 application starting at t = 0. (B) Normalized outputs are shown along with experimental
data used for parameter estimation. (C) Peak responses to a range of LPS doses, each applied for three
days, are shown for each model species. Sharp deflections in the DDE traces are indicated by arrows.

Figure S2. First order parameter sensitivities support model robustness. (A) The TNFα
response to LPS is shown above a plot of the first order sensitivity indices, with a corresponding time
scale. Only two parameters showed sensitivities above 0.1. (B) The mean TNFα response averaged over
100,000 simulations is shown along with the corresponding 95% confidence band. This averaged waveform
is qualitatively similar to the reference waveform shown in red.

Figure S3. Local sensitivity analysis supports model robustness. (A) The histogram shows
counts of both maximal sensitivity indices and absolute peak minimal indices. Very few of these values
exceed unity. (B) Mean sensitivity indices are shown along with corresponding 95% confidence intervals
for all indices >1 (equations S12-14). (C) For each parameter with an absolute sensitivity exceeding unity,
we plotted the TNFα response waveform, averaged over 1000 simulations, along with the associated 95%
confidence band. These averaged responses match the reference model waveform shown in red.

Figure S4. Multiple distinct parameter sets underlie similar dynamic cytokine profiles. (A)
Squared error sums (equations S3,4) for 19 parameter estimation runs with randomly initiated
parameters. The best fits with the lowest errors in model fit to data are indicated by blue. Intermediate
and worst fit errors are shown in cyan and magenta, respectively. Reference simulations (see main text
Fig 1) are shown as black dashed lines. (B) Dynamic cytokine profiles for all estimated parameter sets,
colored based on the error classification shown in panel A.

Figure S5. Multiple distinct parameter fits support robustness of model predictions. (A)
Profiles for the inhibitory influences of IL-10 and TGFβ on TNFα (see main text Fig 4B). Each row
corresponds to a fit with the sum of squared error indicated in the panel (sse). (B) Gain is shown for all
fits under WT and TGFβ KO conditions (compare with main text Fig 3B). (C) Adaptation profiles, as a
function of LPS stimulus amplitude, are shown under the following conditions: WT, IL-10 KO, and
TGFβ KO. Arrows to the right of (A) indicate model variants with discrepancies with data. For row 2
(sse = 0.66), TGFβ KO did not consistently increase Gain. For row 7 (sse = 0.89), IL-10–mediated
inhibition of TNFα did not precede that of TGFβ.
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Figure S6. TGFβ and IL-10 provide temporally distinct feedback inhibition to TNFα with
delays. Simulation results for the DDE model are shown for comparison with corresponding results for
the ODE model (see main text Fig 4) (A) Relative waveforms of TNFα, TGFβ, and IL-10 are plotted for
comparison. (B) Normalized TGFβ and IL-10 contributions to the TNFα activation rate equation show
that IL-10-mediated inhibition of TNFα precedes that of TGFβ. (C) Area under the curve was computed
as a function of time for the TGFβ and IL-10 inputs to TNFα shown in panel A. Normalized AUCs are
shown in panel C. The AUC ratio trace represents the fractional contribution of IL-10 relative to TGFβ.

Figure S7. TNFα gradient with respect to initial TGFβ level. (A) The normalized TNFα
gradient is plotted in the direction of the TGFβ initial condition for comparison with main text figure 5.
In each plot, the y-axis is defined by the TGFβ initial condition range and the x-axis is defined by the
IL-10 initial condition range. Each column corresponds to a different time point at which the gradients
were computed and each row corresponds to a different value of the TNFα initial condition.

Figure S8. Direct Lyapunov exponent analysis. (A) Schematic to guide interpretation of the data.
DLEs are shown in the space defined by the initial levels of TGFβ and IL-10. Such plots are shown in (B)
for different initial TNFα levels (rows) and time points (columns). All simulations involved the
continuous application of LPS = 1000 starting at t = 0. (C) DLE plot for TNFα0 = 0.01 and t = 48 hrs
is shown along with the corresponding plot of ∇TNF |IL100 (see main text Fig 4B). This analysis shows
that the maximal network sensitivity corresponds to the negative TNFα gradient with respect to IL-100.

Figure S9. Adaptation with and without delays. All analyses related to adaptation (see main text
figure 6) were carried out for both DDE and ODE models of WT, IL-10 KO, and TGFβ KO phenotypes.
(A) Adaptation index for TNFα is shown. (B) Peak LPS-induced TNFα response. (C) TNFα response
three days following the initiation of the LPS stimulus. (D) Time from stimulus initiation until the TNFα
peak. (E) Scaled area under the curve (AUC divided by 1000) for the LPS-induced TNFα response.

Figure S10. IL-10 inhibition reduces TNFα and TGFβ. (A) All plots display the maximal TGFβ
level within 48 hr following a 2 hr LPS pulse (LPS range: 10-1000). TGFβ is plotted against the TNFα
expression peak for WT and IL-10 KO simulations. The positive relation between TGFβ and TNFα
suggests that inhibition of TNFα by IL-10 indirectly controls TGFβ expression. (B) Similar findings were
obtained for the relation between IL-10 and TNFα.
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Experimental data used for parameter estimation

All data were from microglial cell cultures stimulated with 1 µg/mL LPS. The LPS stimulus was applied
to different samples for different durations and the resulting cytokine expression measurements were
represented as time series. These data were obtained from four papers from the same lab.

The LPS-stimulated temporal profiles of IL-1β and IL-6 were obtained from [1]. The authors used
primary microglia from one day old mouse cortex. IL-1β and IL-6 were detected using bioassays. The
assays entailed assessment of cell proliferation using conventional cell lines. Standard curves were generated
using recombinant proteins. Protein concentrations of IL-1β and IL-6 at different LPS stimulus durations
were estimated based on the standard curves. LPS-induced temporal expression profile data for TNFα and
TGFβ were obtained from [2]. Cortical microglia were obtained from one day old mice. TNFα and TGFβ
protein expression levels were quantified using bioassays as described above. IL-10 data were obtained
from [3]. Cultured microglia were obtained from human fetal brain tissue. IL-10 protein expression was
quantified based on a bioassay applied following a range of LPS durations. CCL5 data were from [4],
in which human fetal microglia were used and CCL5 protein was quantified with an enzyme-linked
immunosorbent assay.

OR gating model

The OR gating model was implemented based on the following equations:

dCx
dt

= Kx + ki,x
∑
i

Cnix
i

Cnix
i +Kix

nix
−

(
kj,x

∑
j

Kjx
njx

C
njx

j +Kjx
njx

+ γx

)
Cx (S1)

Kx = kx

(
LPS

LPS +KLPS,x

)
(S2)

where Cx = Cx(t) is the expression of cytokine x (TNFα, IL-1β, IL-6, TGFβ, IL-10, or CCL5) that is
produced upon activation by LPS according to equation S2. In equation S2, kx is the activation rate
constant and KLPS,x is the half-maximal activation constant for LPS-mediated Cx production. The
activation of Cx depends on Ci according the a Hill function characterized by half-maximal activation
constant Kix and cooperativity coefficient nix. Similarly, inhibitory cytokine Cj reduces Cx production
according to a decreasing sigmoidal function characterized by Kjx and njx. The respective rate constants
for activation and inhibition are ki,x and kj,x. The degradation of Cx was determined by rate constant γx.

In an attempt to fit this model to experimental data, we executed 10,000 parameter variations in a
100-fold range relative to the reference parameter set for the ODE model (main text equations 1 and 2,
see below). We selected to best candidate parameter sets, based on least squared error, and attempted to
fit the model using MATLAB’s fmincon function. None of the resulting parameter sets gave fits that
remotely resembled the dynamics of the experimental data. Further detail on our parameter estimation
procedures is presented below.
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Parameter estimation and model comparison

All experimental data from the literature were acquired from pdf files using ImageJ [5]. These data sets
were normalized to the interval [0,1]. All K1/2 terms were initiated to values in nM based on available data
(see Tables 4-9). All nH terms were initiated to one and all τd terms were initiated to one. Non-linear
optimization functions were employed in MATLAB based on gradient descent (fmincon) as well as random
search based optimization via simulated annealing (simulannealbnd). Manual adjustments were also
implemented. We performed global sensitivity analysis (see main text Methods and ”Sensitivity analyses”
below) and manually tuned highly sensitive parameters. We applied simulated annealing to our final
manually tuned parameter sets and simulannealbnd converged upon the initially supplied final parameter
set (see ”Parameter variation analyses” below).

In general, parameter calibration with fmincon and simulannealbnd was accomplished by mini-
mizing the sum of squared error between a normalized data waveform and normalized simulation profile:

SSEx =

nt∑
i=1

(Cx,ti − Ĉx,ti)2 (S3)

J = min
θ

NC∑
x=1

SSEx (S4)

where SSEx is the squared error for cytokine x where Cx,t is the normalized experimentally measured

concentration at time t, Ĉx,t is the corresponding simulated value (also normalized), and nt is the number
of time points for which experimental measures were obtained (ti = t1, t2, ..., tnt). For S4, J is the
objective function that was minimized by adjusting parameter values in the vector θ and NC is the number
of cytokines in the model. The model fit was constrained such that all outputs were on the same order
Parameter variation analyses of magnitude. The purpose of this constraint was to avoid achieving a profile
fit by making certain profiles arbitrarily low or high.

Model comparisons were implemented by computing SSEx for each cytokine x in a given model and the
total SSE for that model. Supplementary table 2 displays values of SSEx and total SSE computed for the
following model variants (see main text): ordinary differential equations (ODEs) with a TGFβ autoregula-
tion loop (ODEL), delay differential equations (DDEs) with a TGFβ autoregulation loop (DDEL), ODEs
without a TGFβ autoregulation loop (ODEnL), and DDEs without a TGFβ autoregulation loop (DDEnL).

Additionally, we computed the corrected Akaike information criteria (AICc) as follows for each
cytokine [6]:

AICx = nt,x log

(
SSEx
nt,x

)
+ 2 np (S5)

AICc,x = AICx +
2 np (np + 1)

nt,x − np − 1
(S6)

total AICc =

NC∑
x=1

AICc,x (S7)

where nt,x is the number of experimental time points in the data set for cytokine x, np is the number
of parameters in the model for which AIC is computed, SSEx and NC are as described above. Sup-
plementary table 3 displays values of AICx and total AICc for the following model variants described above.
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To compare model variants using out AIC metrics, we computed an Akaike weight (wi) for each
model [6, 7]:

∆i = AICc,i −min(AICc) (S8)

wi =

exp

(
− ∆i

2

)
4∑
i=1

exp

(
− ∆i

2

) (S9)

where AICc,i is the total AICc for model i and min(AICc) is the minimal total AICc across all models.
Based on these calculations, when we computed wi we obtained w = 0.999 for the DDEL model, w = 0.001
for the ODEL model, and w = 0 for the ‘no TGFβ loop’ models. This result confirms that the DDE model
shows a better fit to the data relative to the ODE model. However, we showed that the ODE and DDE
models produce similar results for functional analyses of our cytokine network (see supplementary figures
S1,6,9). Hence, to highlight the differences between the ODE model employed for the figures in the main
text and the ‘no TGFβ loop’ models, we recomputed wi without the DDEL model. In this case, w > 0.999
was obtained for the ODEL model. The differences in model fits were negligible between the DDE and
ODE models with TGFβ autoregulation in comparison to the model variants without TGFβ autoregulation.

In summary, the results from our model comparisons (Supplementary Tables 2,3) indicate the following
order of model performance, based on consistent results from evaluations of SSE and AIC (best to worst):
DDEL, ODEL, DDEnL, and ODEnL. While the DDEL model showed the best performance, the ODEL
exhibited similar behavior in a range of functional contexts (Figs S1,6,9). In contrast, both models
which included TGFβ positive feedback autoregulation loops showed substantially improved performance
compared to corresponding models without such autoregulation of TGFβ.

Sensitivity analyses

Global analysis

We implemented global sensitivity analysis as in our previous work [8]. The theory and numerical
implementation, described briefly below, is based on previous work [8–10]. In general, the output of
a model C is a function of its parameters θ: C = f(θ1, θ2, ..., θk) for a model with k parameters. The
function can be expanded to a high dimensional model representation (HDMR) as follows:

C = f(θ) = f0 +
∑
i

fi +
∑
i

∑
j>i

fij + . . .+ f1,2,...,k

where fi = fi(θi) and fij = fij(θi, θj). The terms in the HDMR are related to various statistical
properties of C:

f0 = E(C)

fi = E(C|θi)− f0

fij = E(C|θi, θj)− (f0 + fi + fj)

where E(.) is the expectation of the argument and E(C|θi) is the expected value of C when θi is held fixed
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and all other parameters (∼ i) are varied. Hence, E(C|θi) is often written as Eθ∼i(C|θi) to highlight the
fact that parameters other than i (i.e., ∼ i) are varied for the computation of E(.|θi) = E∼θi(.|θi). The term
E(C|θi, θj) is the the mean value of C when all parameter other than θi and θj are varied with θi and θj
fixed (i 6= j). These terms are utilized in variance computations implicated in global sensitivity calculations:

Vi = V
(
fi(θi)

)
= V

(
E(C|θi)

)
Vij = V

(
fij(θi, θj)

)
= V

(
E(C|θi, θj)

)
− (Vi + Vj)

where V (.) is the variance of the argument and Vij represents the joint effect of the parameter pair (θi, θj)
interaction on the variance. Note that V

(
E(C|θi)

)
can be written as Vθi

(
Eθ∼i(C|θi)

)
to indicate that

both θi and θ∼i are varied. For each parameter θi, a range of θi values are chosen. For each θi value
in the range, all other parameters (θ∼i) are varied and expectation with a single fixed θi is obtained.
Thus, the variance is taken over the set of E(C|θi) values computed for the range of θi values. The total
unconditional variance can be decomposed from the variance components as follows:

V (C) =
∑
i

Vi +
∑
i

∑
j>i

Vij + . . .+ V1,2,...,k

Then sensitivity components, including first and higher order terms, are computed by dividing both sides
by V (C):

1 =
∑
i

Si +
∑
i

∑
j>i

Sij + . . .+ S1,2,...,k

where the first-order sensitivity indices, attributed to the individual effect of every parameter, are
computed as follows:

Si =

V

(
E(C|θi)

)
V (C)

=
Vi

V (C)
(S10)

Note that the total variance can also be decomposed as follows:

V (C) = V
(
E(C|θi)

)
+ E

(
V (C|θi)

)
= V

(
E(C|θ∼i)

)
+ E

(
V (C|θ∼i)

)
Then the variance attributable to parameter θi, given complete knowledge of all other parameters
(θ∼i), is

V (C)− V
(
E(C|θ∼i)

)
= E

(
V (C|θ∼i)

)
and the total sensitivity of C to θi, including all first and higher order interactions, is given by di-
viding this expression by V (C):

STi
=

E

(
V (C|θ∼i)

)
V (C)

= 1−
V

(
E(C|θ∼i)

)
V (C)

=

Vi +
∑
j 6=i

Vij + . . .+ V1,2,...,k

V (C)
(S11)

Hence, our global sensitivity analysis entailed evaluating both the individual effects of θi in the absence (Si,
equation S10) and presence (STi

, equation S11) of interactions with all other parameters. In particular,
while we estimated these individual parameter sensitivities, the computations involved variations of both
θi and θ∼i. Thus, these global sensitivity indices are not specific to particular values of any parameters. In
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contrast, for local sensitivity analysis (see below), the local sensitivities are specific to particular reference
parameter values.

In the following, we describe the procedures employed to implement our global sensitivity analysis [9].
The reader can consult [9] for theoretical details. In general, we performed a Monte-Carlo based procedure
for computing sensitivity indices using simulations of the model for a range of parameter variations (N =
100,000). Pseudo-random parameter sets were generated using the Sobol sequence [8]. We established
two independent parameter matrices, A and B, each with k columns (one for each parameter) and N
rows. We next established a set of k matrices, C1, C2, . . ., Ck, where Ck was obtained by taking A and
replacing its kth column with the corresponding kth column of B. We define a(j) as the jth column of A,

b(k) as the kth column of B, and c
(k)
k as the kth column of Ck. Then c

(i)
k = a(i) for every i 6= k and c

(i)
k =

b(i) for i = k. We integrated the model for all of these parameter matrices, thereby generating N(k + 2)
simulations. The corresponding simulation results for cytokine x are annotated as follows:

yx,A = fx(A)

yx,B = fx(B)

yx,Ci
= fx(Ci)

where fx(A) is the output of the model for cytokine x with parameter matrix A. The results of these
simulations were used to numerically estimate the first order sensitivity indices:

Si =
yx,A · yx,Ci − f20
yx,A · yx,A − f20

where

yx,A · yx,Ci
=

1

N

N∑
j=1

y
(j)
x,Ay

(j)
x,Ci

yx,A · yx,A =
1

N

N∑
j=1

y
(j)
x,Ay

(j)
x,A

and

f20 =

(
1

N

N∑
j=1

y
(j)
x,A

)2

Similarly, the total sensitivity indices were computed as

STi
= 1− yx,B · yx,Ci

− f20
yx,A · yx,A − f20

The results of examining first-order sensitivity indices (equation S10) showed that only two pa-
rameters accounted for more than 10% of the variance in the TNFα response to LPS. Those parameters
were also identified in the evaluation of total sensitivity (compare figures 2 and S2). Next, we plotted
the mean TNFα waveform, averaged over all 100,000 simulations used in the global analysis. While this
averaged waveform differed quantitatively from the LPS response of the reference model, both responses
were qualitatively similar, thus supporting the conclusion that our model generates a physiological TNFα
response to LPS even if all parameters are varied simultaneously. This analysis supported the conclusion
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that our model is robust to parameter variations.

Local analysis

For comparison with our global sensitivity analysis, we computed model sensitivity to single parameters
based on isolated parameter variations. We varied each parameter 1000 times over a uniform 2-fold
range relative to the reference value and computed estimates of parameter sensitivity across time for
all cytokines. Simulations entailed application of LPS = 1000 at time t = 0, as in the global analysis.
Sensitivity indices were computed as follows [12]:

Sx,i(t) =
θi,ref

Cx,ref (t)

(
∂Cx,i(t)

∂θi

)
(S12)

∂Cx,i(t) = Cx,i(t)− Cx,ref (t) (S13)

∂θi = θi − θi,ref (S14)

where θi is the the value of parameter i for a given sample θi ∈ (0.5 θi,ref , 2 θi,ref ), θi,ref is the value of
parameter i obtained from our model calibration, Cx,ref (t) is the simulated concentration of cytokine x at
time t with model parameter set θi,ref , and Cx,i(t) is the Cx(t) value computed with θi. We computed
STNFα(t) for all parameters and found that only eight parameters were associated with maximal absolute
sensitivities above unity (Fig S3). We computed the mean STNFα values, averaged over θi, along with
associated 95% confidence intervals (Fig S3B):

STNFα(t) =

(
1

N

)∑
∀θi

STNFα,i(t) (S15)

95%CI = STNFα(t)± t0.025(N − 1)
σ̂√
N

(S16)

where N = 1000 and ti(df) is the value of the t random variable with df degrees of freedom and tail
probability 0.025, and σ̂ is the empirical standard deviation of STNFα(t). Our local sensitivity analysis
identified all parameters found to be sensitive in the global analysis. This analysis showed that only eight
of 88 total parameters (9%) have significant sensitivities to individual parameter variations over a 2-fold
range [8]. Further, we evaluated TNFα responses to LPS for all parameters with absolute sensitivities
above unity (Fig S3C). We plotted the mean TNFα response across 1000 simulations for each parameter,
along with associated 95% confidence intervals. The results showed that the mean responses across 1000
simulations matched the behavior of the fitted model. These results independently support the global
sensitivity analysis results, consistent with model robustness. The results show negligible variation are
consistent with acceptable parameter uncertainty [13,14].

Parameter variation analyses

Computational modeling of certain biological systems have shown that multiple parameter sets can be
associated with similar, if not nearly identical, system behavior [15,16]. We tested the hypothesis that
multiple parameter sets can determine similar behavior of our cytokine network model. Our approach
entailed randomly sampling 20 parameter sets using the Sobol sequence, where each parameter was
varied within a two-fold range [8]. These 20 parameter sets were used as initial estimates for parameter
estimation by simulated annealing with MATLAB’s simulannealbnd function. In contrast to gradient
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based optimization procedures, simulated annealing mitigates the risk for identifying local minima by
randomly varying the parameter values such that a large region of parameter space is considered [17].
Simulated annealing has previously shown utility in calibrating S-system model parameters to experimental
data [17]. The objective function we used for simulated annealing was the sum of squared error as described
above (”Parameter estimation and model comparison”).

Based on a wealth of research demonstrating that divergent parameter sets can generate consistent
model output [18–20], along with research showing that many parameters in systems biology models exert
negligible influences on model behavior [21], we expected that we would find multiple distinct parameter
sets with comparable fits to experimental data. Our results from estimating parameters starting from 20
randomly sampled initial states supported our expectation. Out of 20 independent simulated annealing
runs, 19 parameter estimates converged. We found that multiple distinct parameter sets provided data
fits comparable to the fit of our reference model (Fig S4).

We further evaluated the model predictions associated with the parameter sets that gave the lowest
sum of squared error (SSE) values (Fig S4, blue). These parameter sets had SSE values between 0.53 and
0.89 (Fig S5A). Note that the reference model had SSE = 0.58 and simulated annealing starting from the
reference parameter set converged upon the reference parameter set. Hence, out of the 20 randomly chose
initial parameter sets, only one fit resulted in lower SSE as compared to our reference parameter set. To
evaluate the seven best fitted parameter sets, we first plotted the relative inhibitory input profiles for
IL-10– and TGFβ–mediated inhibition of TNFα (Fig S5A). Only the fit with the highest SSE (= 0.89)
did not show IL-10 input preceding that of TGFβ. Next, we tested whether the seven models exhibited
TGFβ-sensitive tolerance to repeated LPS applications (see main text Fig 3 and associated text for
details). Negative Gain was observed for all parameter sets, consistent with model validation of endotoxin
tolerance. TGFβ KO increased Gain, thereby reducing tolerance, for 6/7 of the parameter sets (see row 2,
SSE = 0.66; Fig S5B). Finally, we tested whether the effects of IL-10 KO and TGFβ KO observed for the
reference model (main text Fig 6) could be obtained for the seven fitted models. In all cases, IL-10 KO
increased adaptation relative to WT (Fig S5C), consistent with our experimental data (Fig 7). TGFβ KO
decreased adaptation in all but two cases (SSE = 0.53 and SSE = 0.66). However, in both these cases,
the effects of TGFβ were very small in comparison to the other simulations. In summary 5/7 parameter
sets gave predictions regarding the temporal profiles of feedback inhibition to TNFα, tolerance and its de-
pendence on TGFβ, and the effect of IL-10 KO on adaptation (see arrows to the left of A for discrepancies).

Parameter analysis discussion

Two distinct approaches exist for addressing the inverse problem of parameter estimation, which is often
is ill posed such that multiple non-unique solutions exist [21, 22]. One general approach is to focus on
model/parameter reduction [15,23], parameter identifiability assessment [24], and improved parameter esti-
mation by utilizing regularization [25]. However, it has been demonstrated that unidentifiable parameters,
characterized by exceedingly large or infinite confidence bounds, are ubiquitous in biological models [21]
as well as models from physics [26]. Furthermore, it was shown that such parameter “sloppiness” is
a fundamental property of physical systems that underlies the perceived independence of macroscopic
macroscopic phenomena on microscopic parameters [26]. From the parameter sloppiness perspective,
it was argued that focus should be directed to verifying the robustness of a model’s dynamic profiles,
which can be well constrained even if many of the underlying parameters are not [21]. For parameter
values with low associated model sensitivities, it is correspondingly difficult to achieve parameter iden-
tifiability, even from extensive experimental sampling [21, 24]. Furthermore, even given high quality
parameter measurements, the experimental conditions under which the measurements were obtained
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my not foster generalizable estimates of the parameter values under physiologically relevant conditions [27].

Given that a spectrum of parameter sets can be associated with similar model predictions [21], it is
informative to study populations of models characterized by distinct parameter sets that fall within a
physiological range [15,28]. It is often assumed that one particular “true” parameter exists, but this notion
is challenged by the large degree of molecular and physiological variability observed in experimental studies
of single cells. Single cell molecular variability [29] suggests that a range of functional parameters are
associated with homeostatic cellular function [20,30]. A wealth of experimental studies have demonstrated
that divergent molecular state configurations are associated with qualitatively and quantitatively compa-
rable physiological phenotypes [31]. Hence, parameter variability can be considered as a motivation rather
than a hindrance for modeling. Furthermore, it has been shown that such variability can be functionally
important [32,33]. Thus, our future efforts will explore the effects of parameter variability on microglial
function.

Our parameter estimation necessarily underdetermined due to the large number of model parameters
(93) in comparison to the number of data points (32). Furthermore, our model is set to arbitrary
units of cytokine concentration because precise data are currently unavailable. Thus, our model can
provide qualitative rather than quantitative predictions [22]. However, as detailed in“Sensitivity analyses”,
we applied both global and local sensitivity analyses and demonstrated that our model generates well
constrained predictions. Consistent with our robustness analyses, we showed that multiple parameter
states can generate similar model behavior (Fig S4,5). Despite the fact that multiple parameter sets
determine similar behavior for our cytokine network model, the high degree of model robustness supports
the generalizability of our model predictions [27]. Furthermore, our validation of the model based on (1)
its replication of endotoxin tolerance phenomena and (2) its tolerance-dependence on TGFβ provides
substantial evidence in favor of model validity.

Lyapunov exponent analysis

To systematically assess the sensitivity of TNFα, TGFβ and IL-10 LPS-mediated responses to the initial
values of these cytokines, we performed a Lyapunov exponent analysis. We implemented the computation
of direct Lyapunov exponents (DLEs) according to previously applied methods [34,35]:

DLE(t,x0) = log

[
λmax

((
∂x(t)

∂x0

)T(
∂x(t)

∂x0

))]
(S18)

x = [TNFα TGFβ IL10]T

∂x(t)

∂x0
=



∂ TNFα(t)

∂ TNFα0

(
TNFα0

TNFα(t)

)
∂ TNFα(t)

∂ TGFβ0

(
TGFβ0
TNFα(t)

)
∂ TNFα(t)

∂ IL100

(
IL10α0

TNFα(t)

)

∂ TGFβ(t)

∂ TNFα0

(
TNFα0

TGFβ(t)

)
∂ TGFβ(t)

∂ TGFβ0

(
TGFβ0
TGFβ(t)

)
∂ TGFβ(t)

∂ IL100

(
IL100

TGFβ(t)

)

∂ IL10(t)

∂ TNFα0

(
TNFα0

IL10(t)

)
∂ IL10(t)

∂ TGFβ0

(
TGFβ0
IL10(t)

)
∂ IL10(t)

∂ IL100

(
IL100
IL10(t)

)


(S19)

where x0 is the concentration of cytokine x at time t = 0 and λmax(A) is the maximal eigenvalue of the
matrix A. The initial condition grid consisted of values between 0.01 to 20 varied in log space. DLEs were
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computed over a range of time points and all simulations entailed continuous LPS = 1000 applications
starting at t = 0 (see Fig S8).
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Supplementary Tables

Note on Table 1: Network interactions characterized by cytokine activation and inhibition are represented
by → and a, respectively.

Note on Table 2: SSE values are shown for each cytokine in each model, along with the totalSSEs
(equation S3). The model variants include: ordinary differential equations (ODEs) with a TGFβ autoreg-
ulation loop (ODEL), delay differential equations (DDEs) with a TGFβ autoregulation loop (DDEL),
ODEs without a TGFβ autoregulation loop (ODEnL), and DDEs without a TGFβ autoregulation loop
(DDEnL). Abbreviations: np = number of parameters, nt = number of time points from the experimental
data set.

Note on Table 3: AICc values are shown for each cytokine in each model, along with the totalAICcs
(equations S5-7). Model annotation is as in Supplementary Table 2.

Note on Tables 4-9: kact refers the the cytokine production rate constant in equation 1 of the main
text (kx), K1/2 refers to a half maximal activation or inhibition constant (Kix or Kjx in equation 1,
respectively), nH refers to the cooperativity coefficient (nix or njx), τd refers to the time delay term, and
kdeg denotes the concentration-dependent degradation constant (γx).
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Table 1. Network interactions

Interaction Reference

LPS → IL-1β [36]
TNFα → IL-1β [36]
IL-6 a IL-1β [37]
IL-10 a IL-1β [38]
CCL5 a IL-1β [39]

LPS → TNFα [1]
IL-1β → TNFα [2]
TNFα → TNFα [40]
IL-6 a TNFα [2]
TGFβ a TNFα [2]
IL-10 a TNFα [2]
CCL5 a TNFα [39]

LPS → IL-6 [1]
TNFα → IL-6 [37]
IL-10 a IL-6 [41]
CCL5 a IL-6 [39]

TNFα → TGFβ [2]
TGFβ → TGFβ hypothesized

LPS → IL-10 [3]
TNFα → IL-10 [3]
IL-6 → IL-10 [3]
CCL5 a IL-10 [42]

LPS → CCL5 [4]
IL-1β → CCL5 [4]
TNFα → CCL5 [4]
IL-6 → CCL5 [4]
TGFβ a CCL5 [4]
IL-10 a CCL5 [4]

Table 2. Model comparisons: sum of squared error (SSE)

Model (np): ODEL (88) DDEL (94) ODEnL (86) DDEnL (92)

IL-1β (nt = 5) 0.127 0.004 0.031 0.019
TNFα (nt = 7) 0.347 0.157 1.365 0.55
IL-6 (nt = 5) 0.037 0.039 0.020 0.043
TGFβ (nt = 7) 0.010 0.038 0.256 0.291
IL-10 (nt = 4) 0.011 0.014 0.051 0.020
CCL5 (nt = 6) 0.051 0.018 0.241 0.322
total SSE 0.583 0.269 1.963 1.245
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Table 3. Model comparisons: Akaike information criterion (AICc)

Model: ODEL DDEL ODEnL DDEnL

IL-1β -20.8 -37.6 -27.9 -30.4
TNFα -22.4 -27.9 -12.9 -19.1
IL-6 -26.9 -26.7 -30.0 -26.2
TGFβ -47.6 -37.9 -24.6 -23.6
IL-10 -26.4 -25.4 -20.2 -23.9
CCL5 -30.6 -36.9 -21.3 -19.5
total AICc -174.8 -192.5 -136.9 -142.8

Table 4. Parameter values: IL-1β regulation

Parameter Interaction Value Reference

kact IL-1β production 1 estimation
K1/2 LPS → IL-1β 3 [36]
τd LPS → IL-1β 1 estimation
K1/2 IL-1β → IL-1β 1 estimation
nH IL-1β → IL-1β 1 estimation
τd IL-1β → IL-1β 1 estimation
K1/2 TNFα → IL-1β 3.16 estimation
nH TNFα → IL-1β 1 estimation
τd TNFα → IL-1β 5 estimation
K1/2 IL-6 a IL-1β 5 [37]
nH IL-6 a IL-1β 1 estimation
τd IL-6 a IL-1β 1 estimation
K1/2 IL-10 a IL-1β 20 estimation
nH IL-10 a IL-1β 1 estimation
τd IL-10 a IL-1β 1 estimation
K1/2 CCL5 a IL-1β 900 [39]
nH CCL5 a IL-1β 1 estimation
τd CCL5 a IL-1β 1 estimation
kdeg IL-1β concentration-dependent degradation 0.01 estimation
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Table 5. Parameter values: TNFα regulation

Parameter Interaction Value Reference

kact TNFα production 900 estimation
K1/2 LPS → TNFα 29 [1]
τd LPS → TNFα 1 estimation
K1/2 IL-1β → TNFα 1.61 [2]
nH IL-1β → TNFα 1 estimation
τd IL-1β → TNFα 1 estimation
K1/2 TNFα → TNFα 0.05 [40]
nH TNFα → TNFα 1 estimation
τd TNFα → TNFα 1 estimation
K1/2 IL-6 a TNFα 35.7 [2]
nH IL-6 a TNFα 1 estimation
τd IL-6 a TNFα 1 estimation
K1/2 TGFβ a TNFα 0.05 [2]
nH TGFβ a TNFα 1 estimation
τd TGFβ a TNFα 1 estimation
K1/2 IL-10 a TNFα 0.011 [2]
nH IL-10 a TNFα 1 estimation
τd IL-10 a TNFα 1 estimation
K1/2 CCL5 a TNFα 973 [39]
nH CCL5 a TNFα 1 estimation
τd CCL5 a TNFα 1 estimation
kdeg TNFα concentration-dependent degradation 0.1 estimation

Table 6. Parameter values: IL-6 regulation

Parameter Interaction Value Reference

kact IL-6 production 0.4 estimation
K1/2 LPS → IL-6 100 [1]
τd LPS → IL-6 1 estimation
K1/2 TNFα → IL-6 5 [37]
nH TNFα → IL-6 1 estimation
τd TNFα → IL-6 1 estimation
K1/2 IL-10 a IL-6 20 estimation
nH IL-10 a IL-6 1 estimation
τd IL-10 a IL-6 1 estimation
K1/2 CCL5 a IL-6 100 [39]
nH CCL5 a IL-6 1 estimation
τd CCL5 a IL-6 1 estimation
kdeg IL-6 concentration-dependent degradation 0.01 estimation
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Table 7. Parameter values: TGFβ regulation

Parameter Interaction Value Reference

kact TGFβ production 40 estimation
K1/2 TNFα → TGFβ 55 [2]
nH TNFα → TGFβ 1 estimation
τd TNFα → TGFβ 1 estimation
K1/2 TGFβ → TGFβ 15 estimation
nH TGFβ → TGFβ 1 estimation
τd TGFβ → TGFβ 1 estimation
kdeg TGFβ concentration-dependent degradation 0.01 estimation

Table 8. Parameter values: IL-10 regulation

Parameter Interaction Value Reference

kact IL-10 production 10 estimation
K1/2 LPS → IL-10 100 [3]
τd LPS → IL-10 1 estimation
K1/2 TNFα → IL-10 22.5 [3]
nH TNFα → IL-10 0.5 estimation
τd TNFα → IL-10 1 estimation
K1/2 IL-6 → IL-10 20 [3]
nH IL-6 → IL-10 1 estimation
τd IL-6 → IL-10 1 estimation
K1/2 CCL5 a IL-10 30 [42]
nH CCL5 a IL-10 1 estimation
τd CCL5 a IL-10 1 estimation
kdeg IL-10 concentration-dependent degradation 0.01 estimation



18

Table 9. Parameter values: CCL5 regulation

Parameter Interaction Value Reference

kact CCL5 production 3 estimation
K1/2 LPS → CCL5 5 [4]
τd LPS → CCL5 1 estimation
K1/2 IL-1β → CCL5 1 [4]
nH IL-1β → CCL5 1 estimation
τd IL-1β → CCL5 1 estimation
K1/2 TNFα → CCL5 2 [4]
nH TNFα → CCL5 2 estimation
τd TNFα → CCL5 1 estimation
K1/2 IL-6 → CCL5 3 [4]
nH IL-6 → CCL5 1 estimation
τd IL-6 → CCL5 1 estimation
K1/2 TGFβ a CCL5 1 [4]
nH TGFβ a CCL5 2 estimation
τd TGFβ a CCL5 1 estimation
K1/2 IL-10 a CCL5 30 [4]
nH IL-10 a CCL5 1 estimation
τd IL-10 a CCL5 1 estimation
kdeg CCL5 concentration-dependent degradation 0.001 estimation
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