Supporting Information

Synthesis and biological evaluation of nitric oxide-releasing hybrids from gemcitabine and phenylsulfonyl furoxans as anti-tumor agents

Xianghua Lia,b,c,\#, Xuemin Wangb,c,\#, Chenjun Xub, Junkai Huanga, Chengniu Wangb, Xinyang Wangb,c, Liqin He*a, Yong Ling*b,c

aAnhui Key Laboratory of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230031, China
bSchool of Pharmacy, Nantong University, Nantong, 226001, PR China
cState Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China

Table of contents

1. The IC\textsubscript{50} values of 6a-m against five human cancer cell lines..2
2. Synthesis..2
3. Cytotoxicity Assay ...12
4. Nitrate/nitrite measurement \textit{in vitro} Assay..12
5. Intracellular NO Release Measurement Using DAF-FM DA...12
6. Flow cytometry assay of cell apoptosis Assay..12
7. Western blot Assay..12
Supporting Information

1. **The IC\textsubscript{50} values of 6a-m against five human cancer cell lines**

Table S1. The IC\textsubscript{50} values of 6a-m against five human cancer cell lines.

<table>
<thead>
<tr>
<th>Compound</th>
<th>HepG2</th>
<th>HCT-116</th>
<th>SW-620</th>
<th>A549</th>
<th>SGC7901</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemcitabine</td>
<td>2.97 ± 0.32</td>
<td>7.33 ± 0.63</td>
<td>5.62 ± 0.47</td>
<td>2.69 ±0.28</td>
<td>3.58 ± 0.33</td>
</tr>
<tr>
<td>JS-K</td>
<td>7.42 ± 0.59</td>
<td>3.75 ± 0.44</td>
<td>5.16 ± 0.63</td>
<td>NDa</td>
<td>ND</td>
</tr>
<tr>
<td>6a</td>
<td>>12.5</td>
<td>>12.5</td>
<td>>12.5</td>
<td>>12.5</td>
<td>ND</td>
</tr>
<tr>
<td>6b</td>
<td>11.6 ± 0.32</td>
<td>>12.5</td>
<td>9.62 ± 0.44</td>
<td>>12.5</td>
<td>ND</td>
</tr>
<tr>
<td>6c</td>
<td>>12.5</td>
<td>12.3 ± 1.03</td>
<td>11.8 ± 0.67</td>
<td>11.5 ± 0.81</td>
<td>ND</td>
</tr>
<tr>
<td>6d</td>
<td>10.8 ± 0.66</td>
<td>>12.5</td>
<td>10.5 ± 0.96</td>
<td>>12.5</td>
<td>ND</td>
</tr>
<tr>
<td>6e</td>
<td>8.73 ± 0.71</td>
<td>9.86 ± 0.92</td>
<td>9.09 ± 0.75</td>
<td>>12.5</td>
<td>11.5 ± 1.02</td>
</tr>
<tr>
<td>6f</td>
<td>>12.5</td>
<td>>12.5</td>
<td>>12.5</td>
<td>>12.5</td>
<td>ND</td>
</tr>
<tr>
<td>6g</td>
<td>11.2 ± 0.73</td>
<td>>12.5</td>
<td>>12.5</td>
<td>>12.5</td>
<td>ND</td>
</tr>
<tr>
<td>6h</td>
<td>>12.5</td>
<td>>12.5</td>
<td>>12.5</td>
<td>>12.5</td>
<td>ND</td>
</tr>
<tr>
<td>6i</td>
<td>>12.5</td>
<td>>12.5</td>
<td>>12.5</td>
<td>>12.5</td>
<td>ND</td>
</tr>
<tr>
<td>6j</td>
<td>10.8 ± 0.97</td>
<td>12.1 ± 0.92</td>
<td>>12.5</td>
<td>11.7 ± 0.84</td>
<td>ND</td>
</tr>
<tr>
<td>6k</td>
<td>11.6 ± 0.89</td>
<td>10.8 ± 1.11</td>
<td>>12.5</td>
<td>>12.5</td>
<td>ND</td>
</tr>
<tr>
<td>6l</td>
<td>>12.5</td>
<td>>12.5</td>
<td>12.4 ± 0.85</td>
<td>>12.5</td>
<td>ND</td>
</tr>
<tr>
<td>6m</td>
<td>>12.5</td>
<td>>12.5</td>
<td>>12.5</td>
<td>>12.5</td>
<td>ND</td>
</tr>
</tbody>
</table>

a The inhibitory effects of individual compounds on the proliferation of cancer cell lines were determined by the MTT assay. The data are the mean values of IC\textsubscript{50} from at least three independent experiments. b Not detected.

2. **Synthesis**

Chemical synthesis materials and instruments

Melting points of individual compounds were determined on a Mel-TEMP II melting point apparatus and uncorrected. 1H NMR and 13C NMR spectra were recorded with a Bruker Avance spectrometer at 300 K, using TMS as an internal standard. Mass spectra were recorded on a Mariner Mass Spectrum (ESI). Element analysis was performed on an Eager 300 instrument. Analytical and preparative thin-layer chromatography (TLC) were performed on silica gel GF/UV 254, and the chromatograms were conducted on silica gel (200–300 mesh, Merck) and visualized under UV light at 254 and 365 nm. All analytical grade chemicals and solvents were purchased from commercial sources and used without further purification in our laboratory. Solutions after reactions and extractions were concentrated using a rotary evaporator operating at a reduced pressure of ca. 20 Torr. Organic solutions were dried over anhydrous sodium sulfate. Compounds with a purity of >95% were determined by high-performance liquid chromatography, and could be used for subsequent experiments. Gemcitabine, dipyridamole, and compound 1 were commercially available, and 5a-m were synthesized, as previously described.18, 21

Synthesis of hybrids from gemcitabine and phenylsulfonyl furoxans

\textbf{4-(2-((3-Carboxypropanoyl)oxy)ethoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide(6a).}

To a solution of compound 5a (0.29 g, 1.00 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (5 mL), DMAP (0.06 g, 0.50 mmol) and succinic anhydride (0.12 g, 1.20 mmol) were added. The mixture was stirred at 40 °C for 5 h and TLC (PE/EtOAc = 1:4, v/v) indicated that the starting material was totally consumed. The reaction mixture to pour into 50 mL water,
extracted with CH₂Cl₂ (3 × 30 mL), and the extract was dried over Na₂SO₄, and concentrated under reduced pressure to give the crude product and was purified by silica gel column chromatography (PE/EtOAc = 4:1, v/v, as the eluant) to afford light yellow solid, 0.35 g, yield: 90.0 %. MS (ESI) m/z = 387 [M + H]+.

4-(3-((3-Carboxypropanoyl)oxy)propoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-Oxide (6b).

The target product was synthesized, using a method similar to that used for the preparation of 6a, compound 5b (0.30 g, 1.00 mmol), DMAP (0.06 g, 0.50 mmol) and succinic anhydride (0.12 g, 1.20 mmol) in 92.0 % yield as a light yellow solid 0.37 g. MS (ESI) m/z = 401 [M + H]+.

4-(4-((3-Carboxypropanoyl)oxy)butoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (6c).

The target product was synthesized, using a method similar to that used for the preparation of 6a, compound 5c (0.31 g, 1.00 mmol), DMAP (0.06 g, 0.50 mmol) and succinic anhydride (0.12 g, 1.20 mmol) in 88.0 % yield as a light yellow solid 0.36 g. MS (ESI) m/z = 415 [M + H]+.

4-(3-((3-Carboxypropanoyl)oxy)-2-methylpropoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (6d).

The target product was synthesized, using a method similar to that used for the preparation of 6a, compound 5d (0.31 g, 1.00 mmol), DMAP (0.06 g, 0.50 mmol) and succinic anhydride (0.12 g, 1.20 mmol) in 85.0 % yield as a light yellow solid 0.35 g. MS (ESI) m/z = 415 [M + H]+.

4-((5-((3-Carboxypropanoyl)oxy)pentyl)oxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (6f).

The target product was synthesized, using a method similar to that used for the preparation of 6a, compound 5f (0.31 g, 1.00 mmol), DMAP (0.06 g, 0.50 mmol) and succinic anhydride (0.12 g, 1.20 mmol) in 85.0 % yield as a light yellow solid 0.36 g. MS (ESI) m/z = 429 [M + H]+.

4-((4-((3-Carboxypropanoyl)oxy)but-2-yn-1-yl)oxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (6g).

The target product was synthesized, using a method similar to that used for the preparation of 6a, compound 5g (0.33 g, 1.00 mmol), DMAP (0.06 g, 0.50 mmol) and succinic anhydride (0.12 g, 1.20 mmol) in 91.2 % yield as a light yellow solid 0.39 g. MS (ESI) m/z = 431 [M + H]+.

4-((2-((3-Carboxypropanoyl)oxy)ethoxy)ethoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (6h).

The target product was synthesized, using a method similar to that used for the preparation of 6a, compound 5h (0.35 g, 1.00 mmol), DMAP (0.06 g, 0.50 mmol) and succinic anhydride (0.12 g, 1.20 mmol) in 90.8 % yield as a light yellow solid 0.41 g. MS (ESI) m/z = 449 [M + H]+.
Supporting Information

4-(2-(3-Carboxypropanamido)ethoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (6i).

The target product was synthesized, using a method similar to that used for the preparation of 6a, compound 5i (0.26 g, 1.00 mmol), DMAP (0.06 g, 0.50 mmol) and succinic anhydride (0.12 g, 1.20 mmol) in 88.0 % yield as a light yellow solid 0.34 g. MS (ESI) m/z = 386 [M + H]⁺.

4-(3-(Carboxypropanamido)propoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (6j).

The target product was synthesized, using a method similar to that used for the preparation of 6a, compound 5j (0.30 g, 1.00 mmol), DMAP (0.06 g, 0.50 mmol) and succinic anhydride (0.12 g, 1.20 mmol) in 89.5 % yield as a light yellow solid 0.36 g. MS (ESI) m/z = 400 [M + H]⁺.

4-(4-(3-Carboxypropanamido)butoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (6k).

The target product was synthesized, using a method similar to that used for the preparation of 6a, compound 5k (0.31 g, 1.00 mmol), DMAP (0.06 g, 0.50 mmol) and succinic anhydride (0.12 g, 1.20 mmol) in 91.5 % yield as a light yellow solid 0.38 g. MS (ESI) m/z = 400 [M + H]⁺.

4-(2-(3-Carboxy-N-methylpropanamido)ethoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (6l).

The target product was synthesized, using a method similar to that used for the preparation of 6a, compound 5l (0.30 g, 1.00 mmol), DMAP (0.06 g, 0.50 mmol) and succinic anhydride (0.12 g, 1.20 mmol) in 92.7 % yield as a light yellow solid 0.37 g. MS (ESI) m/z = 400 [M + H]⁺.

4-((5-(3-Carboxypropanamido)pentyl)oxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (6m).

The target product was synthesized, using a method similar to that used for the preparation of 6a, compound 5m (0.31 g, 1.00 mmol), DMAP (0.06 g, 0.50 mmol) and succinic anhydride (0.12 g, 1.20 mmol) in 91.5 % yield as a light yellow solid 0.39 g. MS (ESI) m/z = 428 [M + H]⁺.

4-Amino-1-((2R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(((tert-butyldimethylsilyl)oxy)methyl)-3,3-difluorotetrahydrofuran-2-yl)pyrimidin-2(1H)-one (8).

To a solution of compound 7 (2.63 g, 10.00 mmol) in DMF (200 mL), TBDMS-Cl (6.00 g, 40.00 mmol) and imidazole (2.72 g, 40.00 mmol) were added. The mixture was stirred at room temperature for 5 h and TLC (PE/EtOAc = 4:1, v/v) indicated that the starting material was totally consumed. The reaction mixture to pour into 500 mL water, extracted with CH₂Cl₂ (3 × 50 mL), and the extract was dried over Na₂SO₄, and concentrated under reduced pressure to give the crude product and was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 1:20, v/v, as the eluant) to afford white solid 4.28 g, yield: 87.3%. ESI-MS (m/z): 491 [M+H]⁺.
To a solution of compound 6a (0.19 g, 0.50 mmol) in CH$_2$Cl$_2$ (10 mL), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) were added. The mixture was stirred at room temperature under N$_2$ for 2 h and TLC (PE/EtOAc = 1:4, v/v) indicated that the starting material was totally consumed. Compound 8 (0.25 g, 0.50 mmol) was added to the reaction mixture at room temperature under N$_2$ for 18 h until the TLC indicated that the starting material was totally consumed. The reaction mixture to pour into 50 mL water, extracted with CH$_2$Cl$_2$ (3 × 50 mL), and the extract was dried over Na$_2$SO$_4$, and concentrated under reduced pressure to give the crude product and was purified by silica gel column chromatography (PE/EtOAc = 1:4, v/v, as the eluant) to afford light yellow solid 0.22 g, yield: 52.0%.

1H NMR (DMSO-d$_6$, 300 MHz, δ ppm): 11.18 (s, 1H, NH), 8.02 (d, 2H, J = 7.5 Hz, Ar-H), 8.00 (d, J = 7.5 Hz, 1H, CH=CHN), 7.73 (t, 1H, Ar-H), 7.21 (d, 2H, J = 7.5 Hz, Ar-H), 6.22 (d, 1H, CH=CHN), 5.76 (m, 1H, NCH), 5.31 (m, 1H, HOCH), 4.59 (m, 3H, SiOCH, OCH$_2$), 4.40 (m, 1H, SiOCH), 3.98 (m, 1H, OCH), 3.80 (m, 1H, CH$_2$OSi), 3.65 (m, 1H, CH$_2$OSi), 2.74 (t, 2H, OCCH$_2$), 2.63 (t, 2H, OCCH$_2$), 0.89 (m, 18H, 6 × CH$_3$), 0.11 (s, 12H, 4 × CH$_3$); ESI-MS (m/z): 860 [M+H]$^+$.

The target product was synthesized, using a method similar to that used for the preparation of 9a, compound 6b (0.20 g, 0.50 mmol) and 8 (0.25 g, 0.50 mmol), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) in 57.0% yield as a light yellow solid 0.25 g. ESI-MS (m/z): 874 [M+H]$^+$.

The target product was synthesized, using a method similar to that used for the preparation of 9a, compound 6c (0.21 g, 0.50 mmol) and 8 (0.25 g, 0.50 mmol), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) in 51.0% yield as a light yellow solid 0.23 g. ESI-MS (m/z): 888 [M+H]$^+$.

The target product was synthesized, using a method similar to that used for the preparation of 9a, compound 6d (0.21 g, 0.50 mmol) and 8 (0.25 g, 0.50 mmol), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) in 53.0% yield as a light yellow solid 0.24 g. ESI-MS (m/z): 888 [M+H]$^+$.

The target product was synthesized, using a method similar to that used for the preparation of 9a, compound 6e (0.21 g, 0.50 mmol) and 8 (0.25 g, 0.50 mmol), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) in 49.3% yield as a light yellow solid 0.22 g. ESI-MS (m/z): 884 [M+H]$^+$.

Supporting Information
Supporting Information

4-(5-(4-(1-((2R,4R,5R)-4-((Tert-butyldimethylsilyl)oxy)methyl)-3,3-difluorotetrahydrofur-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanamido)-4-oxobutanoyl)oxy)pentyl)oxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (9f).

The target product was synthesized, using a method similar to that used for the preparation of compound 6f (0.21 g, 0.50 mmol) and 8 (0.25 g, 0.50 mmol), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) in 50.8 % yield as a light yellow solid 0.22 g. ESI-MS (m/z): 902 [M+H]+.

4-(2-(2-((4-((1-((2R,4R,5R)-4-((Tert-butyldimethylsilyl)oxy)-5-(((tert-butyldimethylsilyl)oxy)methyl)-3,3-difluorotetrahydrofur-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanoyl)oxy)ethoxy)ethoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (9g).

The target product was synthesized, using a method similar to that used for the preparation of compound 9a, compound 6g (0.22 g, 0.50 mmol) and 8 (0.25 g, 0.50 mmol), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) in 55.0 % yield as a light yellow solid 0.25 g. ESI-MS (m/z): 904 [M+H]+.

4-(4-(2-((1-((2R,4R,5R)-4-((Tert-butyldimethylsilyl)oxy)methyl)-3,3-difluorotetrahydrofur-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanamido)ethoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (9h).

The target product was synthesized, using a method similar to that used for the preparation of compound 9a, compound 6h (0.22 g, 0.50 mmol) and 8 (0.25 g, 0.50 mmol), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) in 48.7 % yield as a light yellow solid 0.23 g. ESI-MS (m/z): 936 [M+H]+.

4-(4-(4-((1-((2R,4R,5R)-4-((Tert-butyldimethylsilyl)oxy)methyl)-3,3-difluorotetrahydrofur-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanamido)butoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (9i).

The target product was synthesized, using a method similar to that used for the preparation of compound 9a, compound 6i (0.18 g, 0.50 mmol) and 8 (0.25 g, 0.50 mmol), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) in 51.5 % yield as a light yellow solid 0.22 g. ESI-MS (m/z): 859 [M+H]+.

4-(3-(4-((1-((2R,4R,5R)-4-((Tert-butyldimethylsilyl)oxy)methyl)-3,3-difluorotetrahydrofur-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanamido)propoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (9j).

The target product was synthesized, using a method similar to that used for the preparation of compound 9a, compound 6j (0.20 g, 0.50 mmol) and 8 (0.25 g, 0.50 mmol), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) in 47.8 % yield as a light yellow solid 0.21 g. ESI-MS (m/z): 873 [M+H]+.

4-(4-(4-((1-((2R,4R,5R)-4-((Tert-butyldimethylsilyl)oxy)methyl)-3,3-difluorotetrahydrofur-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanamido)butoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (9k).
The target product was synthesized, using a method similar to that used for the preparation of 9a, compound 6k (0.21 g, 0.50 mmol) and 8 (0.25 g, 0.50 mmol), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) in 55.0 % yield as a light yellow solid 0.24 g. ESI-MS (m/z): 887 [M+H]+.

4-(2-(4-((1-((2R,4R,5R)-4-((Tert-butyldimethylsilyl)oxy)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-N-methyl-4-oxobutanamido)ethoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (9l).

The target product was synthesized, using a method similar to that used for the preparation of 9a, compound 6l (0.20 g, 0.50 mmol) and 8 (0.25 g, 0.50 mmol), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) in 48.0 % yield as a light yellow solid 0.21 g. ESI-MS (m/z): 873 [M+H]+.

4-((5-(4-((1-((2R,4R,5R)-3,3-Difluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanamido)pentyl)oxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (9m).

The target product was synthesized, using a method similar to that used for the preparation of 9a, compound 6m (0.21 g, 0.50 mmol) and 8 (0.25 g, 0.50 mmol), NHS (0.07 g, 0.60 mmol), EDCI (0.12 g, 0.60 mmol), DMAP (0.01 g, 0.10 mmol) in 59.0 % yield as a light yellow solid 0.26 g. ESI-MS (m/z): 901 [M+H]+.

4-(2-((4-((1-((2R,4R,5R)-3,3-Difluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanoyl)oxy)ethoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (10a).

Compound 9a (0.20 g, 0.23 mmol) was treated with TBAF (1M solution in THF, 5 mL). The reaction mixture was stirred for 0.5 h at 0 °C under nitrogen atmosphere. After completion of the reaction, THF was removed under reduced pressure and the liquid crude product was purified by column chromatography over silica gel (CH₂Cl₂/MeOH = 20:1, v/v, as the eluant) to afford light yellow solid product 0.13 g, yield: 86.7%. Analytical data for 10a: mp: 172-175 °C; ESI-MS (m/z): 632 [M+H]+; ¹H NMR (DMSO-d₆, 300 MHz, δ ppm): 11.10 (s, 1H, NH), 8.24 (d, 2H, J = 7.5 Hz, Ar-H), 8.02 (d, J = 7.5 Hz, 1H, CH=CHN), 7.90 (t, 1H, Ar-H), 7.24 (d, 2H, J = 7.5 Hz, Ar-H), 6.34 (d, 1H, CH=CHN), 5.33 (m, 1H, NCH), 4.48 (t, 2H, OCH₂), 4.42 (t, 2H, OCH₂), 3.89 (m, 1H, OCH), 3.80 (m, 1H, CH₂OH), 3.65 (m, 1H, CH₂OH), 2.78 (t, 2H, OCH₂), 2.58 (t, 2H, OCH₂); ¹³C NMR (DMSO-d₆, 75 MHz, δ ppm): 173.27 (NCHO), 172.63 (COO), 163.27 (OC=N), 159.35 (NC=N), 154.66 (NCO), 145.20 (NCH=CH), 137.74 (Ar–C), 136.51 (Ar–C), 130.46 (Ar–C), 128.76 (Ar–C), 123.17 (CF), 110.99 (SC=N), 96.38 (NCH=CH), 84.38 (NCHO), 81.51 (OCH), 71.46 (CHOH), 67.94 (OCH₂), 62.38 (OCH₂), 59.24 (OCH₂), 31.82 (OCC₂H), 28.59 (OCC₂H); Anal. Calcd for C₂₂H₂₃F₂N₅O₁₂S: C, 43.74; H, 3.67; N, 11.09; Found: C, 43.53; H, 3.77; N, 11.21.

4-(3-((4-((1-((2R,4R,5R)-3-Difluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanoyl)oxy)propoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (10b).

The target product was synthesized, using a method similar to that used for the preparation of 10a, compound 9b (0.20 g, 0.23 mmol) in 82.8 % yield as a light yellow solid 0.12 g. Analytical data for 10b: mp: 182-185 °C; ESI-
4-((4-((1-((2R,4R,5R)-3,3-Difluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanoyl)oxy)butoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (10c).

The target product was synthesized, using a method similar to that used for the preparation of 10a, compound 9c (0.20 g, 0.23 mmol) in 81.6 % yield as a light yellow solid 0.12 g. Analytical data for 10c: mp: 205-208 ºC; ESI-MS (m/z): 660 [M+H]⁺; ¹H NMR (DMSO-d₆, 300 MHz, δ ppm): 11.12 (s, 1H, NH), 8.23 (d, 2H, J = 7.5 Hz, Ar-H), 8.02 (d, J = 7.5 Hz, 1H, CH=CHN), 7.89 (t, 1H, Ar-H), 7.23 (d, 2H, J = 7.5 Hz, Ar-H), 6.33 (d, 1H, CH=CHN), 6.17 (m, 1H, NCH), 5.31 (m, 1H, HOCH), 4.41 (t, 2H, OCH₂), 4.08 (t, 2H, OCH₂), 3.89 (m, 1H, OCH), 3.80 (m, 1H, CH₂OH), 3.66 (m, 1H, CH₂OH), 2.72 (t, 2H, OCCH₂), 2.60 (t, 2H, OCCH₂), 1.80 (m, 2H, CH₂), 1.68 (m, 2H, CH₂); ¹³C NMR (DMSO-d₆, 75 MHz, δ ppm): 173.34 (NHCO), 172.58 (COO), 163.29 (OC=N), 159.26 (NC=N), 154.61 (NCO), 145.26 (NCH=CH), 137.78 (Ar-C), 136.52 (Ar-C), 130.41 (Ar-C), 128.88 (Ar-C), 123.17 (CF), 110.91 (SC=N), 96.35 (NCH=CH), 84.56 (NCHO), 81.53 (OCH), 71.52 (CHOH), 63.97 (OCH), 61.53 (CH₂OH), 31.80 (OCCH₂), 28.59 (OCCH₂), 28.32 (CH₂); Anal. Calcd for C₂₃H₂₇F₂N₂O₇S: C, 44.65; H, 3.90; N, 10.85; Found: C, 44.38; H, 4.08; N, 11.00.

4-((4-((1-((2R,4R,5R)-3,3-Difluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanoyl)oxy)pentyl)oxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (10d).

The target product was synthesized, using a method similar to that used for the preparation of 10a, compound 9d (0.20 g, 0.23 mmol) in 86.3 % yield as a light yellow solid 0.14 g. Analytical data for 10d: mp: 195-197 ºC; ESI-MS (m/z): 660 [M+H]⁺; ¹H NMR (d⁶-DMSO, 300 MHz, δ ppm): 11.16 (s, 1H, NH), 8.27 (d, 2H, J = 7.5 Hz, Ar-H), 8.04 (d, J = 7.5 Hz, 1H, CH=CHN), 7.86 (t, 1H, Ar-H), 7.28 (d, 2H, J = 7.5 Hz, Ar-H), 6.39 (d, 1H, CH=CHN), 6.12 (m, 1H, NCH), 5.36 (m, 1H, HOCH), 4.38 (t, 2H, OCH₂), 4.00 (t, 2H, OCH₂), 3.83 (m, 1H, OCH), 3.80 (m, 1H, CH₂OH), 3.67 (m, 1H, CH₂OH), 2.77 (t, 2H, OCCH₂), 2.57 (t, 2H, OCCH₂), 1.89 (m, 2H, CH₂), 1.21 (m, 3H, CH₃); ¹³C NMR (DMSO-d₆, 75 MHz, δ ppm): 173.39 (NHCO), 172.52 (COO), 163.29 (OC=N), 159.26 (NC=N), 154.61 (NCO), 145.26 (NCH=CH), 137.71 (Ar-C), 136.52 (Ar-C), 130.44 (Ar-C), 128.71 (Ar-C), 123.12 (CF), 110.93 (SC=N), 96.37 (NCH=CH), 84.51 (NCHO), 81.50 (OCH), 71.52 (CHOH), 69.97 (OCH), 60.97 (OCH₂), 59.29 (CH₂OH), 31.79 (OCH₂), 28.51 (OCH₂), 29.08 (CH₂), 20.05 (CH₂); Anal. Calcd for C₂₃H₂₇F₂N₂O₇S: C, 45.52; H, 4.13; N, 10.62; Found: C, 45.79; H, 4.27; N, 10.82.

4-((4-((1-((2R,4R,5R)-3,3-Difluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanoyl)oxy)but-2-yn-1-yloxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (10e).
The target product was synthesized, using a method similar to that used for the preparation of 10a, compound 9e (0.20 g, 0.23 mmol) in 79.6 % yield as a light yellow solid 0.12 g. Analytical data for 10e: mp: 209-211 °C; ESI-MS (m/z): 656 [M+H]+; 'H NMR (DMSO-d6, 300 MHz, δ ppm): 11.11 (s, 1H, NH), 8.02 (d, 2H, J = 7.5 Hz, Ar-H), 7.78 (t, 1H, Ar-H), 7.23 (d, 2H, J = 7.5 Hz, Ar-H), 6.31 (d, 1H, CH=CHN), 6.17 (m, 1H, NCH), 5.26 (m, 3H, HOCH2, OCH2), 4.84 (t, 2H, OCH3), 3.89 (m, 1H, OCH), 3.80 (m, 1H, CH2OH), 3.63 (m, 1H, CH2OH), 2.73 (t, 2H, OCCH2), 2.63 (t, 2H, OCCH3); 13C NMR (DMSO-d6, 75 MHz, δ ppm): 173.23 (NHCO), 171.99 (COO), 163.20 (OC=N), 158.47 (NC=N), 154.65 (NCO), 145.26 (NCH=CH), 137.44 (Ar-C), 136.69 (Ar-C), 130.52 (Ar-C), 128.82 (Ar-C), 123.16 (CF), 111.14 (SC=N), 96.37 (NCH=CH), 84.46 (NCHO), 81.46 (OCH), 79.81 (C=O), 68.83 (CHOH), 59.52 (OCH2), 59.29 (OCH3), 59.26 (CH2OH), 31.65 (OCCH2), 28.26 (OCCH3). Anal. Caled for C25H25F2N2O2S: C, 45.80; H, 3.54; N, 10.68; Found: C, 45.59; H, 3.76; N, 10.87.

4-((5-(4-((1-(2R,4R,5R)-3,3-Difluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yI)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanoloyloxy)pentyl)oxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (10f).

The target product was synthesized, using a method similar to that used for the preparation of 10a, compound 9f (0.21 g, 0.23 mmol) in 75.8 % yield as a light yellow solid 0.12 g. Analytical data for 10f: mp: 218-220 °C; ESI-MS (m/z): 674 [M+H]+; 'H NMR (DMSO-d6, 300 MHz, δ ppm): 11.11 (s, 1H, NH), 8.25 (d, 2H, J = 7.5 Hz, Ar-H), 8.03 (d, J = 7.5 Hz, 1H, CH=CHN), 7.87 (t, 1H, Ar-H), 7.26 (d, 2H, J = 7.5 Hz, Ar-H), 6.34 (d, 1H, CH=CHN), 6.19 (m, 1H, NCH), 5.32 (m, 1H, HOCH2), 4.47 (t, 2H, OCH3), 4.11 (t, 2H, OCH2), 3.89 (m, 1H, OCH), 3.82 (m, 1H, CH2OH), 3.66 (m, 1H, CH2OH), 2.78 (t, 2H, OCCH2), 2.55 (t, 2H, OCCH3), 1.83 (m, 2H, CH2), 1.62 (m, 2H, CH2), 1.52 (m, 2H, CH2); 13C NMR (DMSO-d6, 75 MHz, δ ppm): 173.33 (NHCO), 172.56 (COO), 163.21 (OC=N), 159.24 (NC=N), 154.61 (NCO), 145.26 (NCH=CH), 137.73 (Ar-C), 136.56 (Ar-C), 130.41 (Ar-C), 128.75 (Ar-C), 123.11 (CF), 110.93 (SC=N), 96.31 (NCH=CH), 84.51 (NCHO), 81.52 (OCH), 71.53 (CHOH), 65.92 (OCH3), 65.22 (OCH2), 59.21 (CH2OH), 31.78 (OCCH2), 28.57 (OCCH3), 27.05 (CH2), 24.93 (CH2), 20.19 (CH2); Anal. Caled for C25H25F2N2O2S: C, 46.36; H, 4.34; N, 10.40; Found: C, 46.11; H, 4.42; N, 10.58.

4-(2-(2-((4-((1-(2R,4R,5R)-3,3-Difluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yI)-2-oxo-1,2-dihydropyrimidin-4-yl)amino)-4-oxobutanoloyloxy)ethoxy)ethoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide (10g).

The target product was synthesized, using a method similar to that used for the preparation of 10a, compound 9g (0.20 g, 0.22 mmol) in 87.2 % yield as a light yellow solid 0.13 g. Analytical data for 10g: mp: 200-203 °C; ESI-MS (m/z): 696 [M+H]+; 'H NMR (DMSO-d6, 300 MHz, δ ppm): 11.11 (s, 1H, NH), 8.02 (d, 2H, J = 7.5 Hz, Ar-H), 8.02 (d, J = 7.5 Hz, 1H, CH=CHN), 7.74 (t, 1H, Ar-H), 7.23 (d, 2H, J = 7.5 Hz, Ar-H), 6.33 (d, 1H, CH=CHN), 6.17 (m, 1H, NCH), 5.31 (m, 1H, HOCH2), 4.51 (m, 2H, OCH2), 4.16 (m, 2H, OCH2), 3.89 (m, 1H, OCH), 3.81 (m, 3H, OCH2, CH2OH), 3.69 (m, 3H, OCH2, CH2OH), 2.71 (t, 2H, OCCH2), 2.59 (t, 2H, OCCH3); 13C NMR (DMSO-d6, 75 MHz, δ ppm): 173.25 (NHCO), 172.62 (C, COO), 163.21 (OC=N), 159.34 (NC=N), 154.64 (NCO), 145.22 (NCH=CH), 137.73 (Ar-C), 136.58 (Ar-C), 130.46 (Ar-C), 128.76 (Ar-C), 123.16 (CF), 110.96 (SC=N), 96.35 (NCH=CH), 84.31 (NCHO), 81.52 (OCH), 71.30 (CHOH), 68.87 (OCH2), 68.25 (OCH3), 63.88 (OCH4), 59.27 (CH2OH), 31.73 (OCCH3), 28.43 (OCCH2); Anal. Caled for C25H25F2N2O3S: C, 44.45; H, 4.03; N, 10.37; Found: C, 44.23; H, 4.30; N, 10.51.
111.66 (SC=N), 96.36 (NCH=CH), 84.54 (NCHO), 81.53 (OCH), 68.89 (CHOH), 65.44 (OCH2), 34.08 (CHF), 33.01 (CF3), 29.27 (OCCH3), 28.54 (OCCH2), 29.27 (OCCH2); Anal. Calcd for C29H27F2N3O3S: C, 43.81; H, 3.84; N, 13.33; Found: C, 43.59; H, 3.91; N, 13.44.

4-(2-(4-((1-((2R,4R,5R)-3,3-Difluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-1,2-diarylpyrimidin-4-yl)amino)-4-oxobutanamido)ethoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide(10j).

The target product was synthesized, using a method similar to that used for the preparation of 10a, compound 9j (0.20 g, 0.23 mmol) in 76.5% yield as a light yellow solid 0.11 g. Analytical data for 10j; mp: 181-183 °C; ESI-MS (m/z): 645 [M+H]⁺; 1H NMR (DMSO-d6, 300 MHz, δ ppm): 11.11 (s, 2H, NH), 8.25 (d, 2H, J = 7.5 Hz, Ar-H), 8.24 (d, J = 7.5 Hz, 1H, CH=CHN), 7.25 (t, 1H, Ar-H), 7.23 (d, 2H, J = 7.5 Hz, Ar-H), 6.33 (d, 1H, CH=CHN), 6.18 (m, 1H, NCH), 5.31 (m, 1H, HOCH2), 4.27 (t, 2H, OCH2), 3.91 (m, 1H, CH2OH), 3.61 (t, 2H, NHCH2), 2.71 (t, 2H, OOCCH2), 2.52 (t, 2H, OOCCH2); 13C NMR (DMSO-d6, 75 MHz, δ ppm): 173.22 (NCHO), 173.08 (NCHO), 163.24 (OC=N), 158.42 (NC=N), 154.64 (NCO), 145.24 (NCH=CH), 137.49 (Ar–C), 136.62 (Ar–C), 130.51 (Ar–C), 128.43 (Ar–C), 124.39 (CF), 121.19 (SC=N), 96.33 (NCH=CH), 84.11 (NCHO), 81.56 (OCH), 68.89 (CHOH), 59.27 (CH2O), 30.92 (OCCH3), 29.27 (OCCH2); Anal. Calcd for C29H27F2N3O3S: C, 43.81; H, 3.84; N, 13.33; Found: C, 43.59; H, 3.91; N, 13.44.
The target product was synthesized, using a method similar to that used for the preparation of 10a, compound 9k (0.20 g, 0.23 mmol) in 76.8 % yield as a light yellow solid 0.12 g. Analytical data for 10k: mp: 198-201°C; ESI-MS (m/z): 659 [M+H]^+; ^1H NMR (DMSO-d$_6$, 300 MHz, δ ppm): 11.16 (s, 2H, NH), 8.24 (d, 2H, J = 7.5 Hz, Ar-H), 8.09 (d, J = 7.5 Hz, 1H, CH=CHN), 7.75 (t, 1H, Ar-H), 7.22 (d, 2H, J = 7.5 Hz, Ar-H), 6.38 (d, 1H, CH=CHN), 6.19 (m, 1H, NCH), 5.32 (m, 1H, HOCH$_2$), 4.14 (t, 2H, OCH$_2$), 3.90 (m, 1H, OCH), 3.82 (m, 1H, CH$_3$OH), 3.65 (m, 1H, CH$_2$OH), 3.59 (t, 2H, NHCH$_2$), 2.72 (t, 2H, OCH$_2$), 2.59 (t, 2H, OCH$_2$), 1.66 (m, 2H, CH$_2$), 1.11 (m, 2H, CH$_2$); ^13C NMR (DMSO-d$_6$, 75 MHz, δ ppm): 173.25 (NHCO), 173.08 (NHCO), 163.21 (OC=N), 158.43 (NC=N), 154.69 (NCO), 145.25 (NCH=CH), 137.43 (Ar=C), 136.67 (Ar=C), 130.58 (Ar=C), 128.49 (Ar=C), 124.38 (CF), 121.18 (SC=N), 96.36 (NCH=CH), 84.07 (NCHO), 81.50 (OCH), 68.83 (CHOH), 65.71 (CH$_2$O), 59.25 (CH$_2$OH), 51.90 (HNCH$_2$), 31.89 (OCCH$_2$), 29.48 (OCCH$_3$), 28.39 (CH$_2$), 28.30 (CH$_2$); Anal. Calcd for C$_2$H$_5$F$_2$N$_2$O$_1$S: C, 45.59; H, 4.29; N, 12.76; Found: C, 45.28; H, 4.48; N, 12.88.

The target product was synthesized, using a method similar to that used for the preparation of 10a, compound 9l (0.20 g, 0.23 mmol) in 66.9 % yield as a light yellow solid 0.12 g. Analytical data for 10l: mp: 174-176 °C; ESI-MS (m/z): 645 [M+H]^+; ^1H NMR (DMSO-d$_6$, 300 MHz, δ ppm): 11.11 (s, 1H, NH), 8.25 (d, 2H, J = 7.5 Hz, Ar-H), 8.24 (d, J = 7.5 Hz, 1H, CH=CHN), 7.25 (t, 1H, Ar-H), 7.23 (d, 2H, J = 7.5 Hz, Ar-H), 6.33 (d, 1H, CH=CHN), 6.18 (m, 1H, NCH), 5.32 (m, 1H, HOCH$_2$), 4.19 (t, 2H, OCH$_2$), 3.90 (m, 1H, OCH), 3.81 (m, 1H, CH$_3$OH), 3.67 (m, 1H, CH$_2$OH), 3.63 (t, 2H, NCH$_2$), 2.72 (t, 2H, OCH$_2$), 2.58 (t, 2H, OCH$_2$), 1.24 (m, 3H, CH$_3$); ^13C NMR (DMSO-d$_6$, 75 MHz, δ ppm): 173.28 (NHCO), 173.04 (NHCO), 163.14 (OC=N), 158.47 (NC=N), 154.58 (NCO), 145.13 (NCH=CH), 145.07 (Ar=C), 136.69 (Ar=C), 130.52 (Ar=C), 125.40 (Ar=C), 123.38 (CF), 119.95 (SC=N), 96.36 (NCH=CH), 84.54 (NCHO), 81.30 (OCH), 68.80 (CHOH), 64.38 (CHO$_2$), 59.16 (CH$_2$OH), 51.86 (HNCH$_2$), 31.61 (OCCH$_2$), 29.50 (NCH$_3$), 28.37 (OCCH$_3$); Anal. Calcd for C$_2$H$_5$F$_2$N$_2$O$_1$S: C, 44.72; H, 4.07; N, 13.04; Found: C, 44.46; H, 4.19; N, 13.25.

The target product was synthesized, using a method similar to that used for the preparation of 10a, compound 9m (0.21 g, 0.23 mmol) in 77.8 % yield as a light yellow solid 0.12 g. Analytical data for 10m: mp: 210-213 °C; ESI-MS (m/z): 673 [M+H]^+; ^1H NMR (DMSO-d$_6$, 300 MHz, δ ppm): 11.11 (s, 2H, NH), 8.26 (d, 2H, J = 7.5 Hz, Ar-H), 8.05 (d, J = 7.5 Hz, 1H, CH=CHN), 7.79 (t, 1H, Ar-H), 7.24 (d, 2H, J = 7.5 Hz, Ar-H), 6.37 (d, 1H, CH=CHN), 6.18 (m, 1H, NCH), 5.30 (m, 1H, HOCH$_2$), 4.18 (t, 2H, OCH$_2$), 3.91 (m, 1H, OCH), 3.80 (m, 1H,
1H, CH$_2$OH), 3.66 (m, 1H, CH$_2$OH), 3.52 (t, 2H, NHCH$_2$), 2.70 (t, 2H, OCCH$_2$), 2.53 (t, 2H, OCCH$_2$), 1.69 (m, 2H, CH$_2$), 1.41 (m, 2H, CH$_2$), 1.19 (m, 2H, CH$_2$); 13C NMR (DMSO-d$_6$, 75 MHz, δ ppm): 173.23 (NHCO), 173.09 (NHCO), 163.23 (OC=N), 158.45 (NC=N), 154.68 (NCO), 145.20 (NCH=CH), 137.41 (Ar–C), 136.67 (Ar–C), 130.56 (Ar–C), 128.42 (Ar–C), 124.33 (CF), 121.14 (SC=N), 96.37 (NCH=CH), 84.09 (NCHO), 81.52 (OCH), 68.81 (CHOH), 65.79 (CH$_2$O), 59.24 (CH$_2$OH), 51.97 (HNCH$_2$), 31.99 (OCCH$_2$), 29.68 (OCCH$_2$), 28.66 (CH$_2$), 28.38 (CH$_2$), 24.37 (CH$_2$); Anal. Calcld for C$_{26}$H$_{30}$F$_2$N$_6$O$_{11}$S: C, 46.43; H, 4.50; N, 12.49; Found: C, 46.21; H, 4.68; N, 4.61.

3. Cytotoxicity Assay

Human lung cancer cell (A549), hepatocellular carcinoma cells (HepG2), human colon cancer cell (HCT-116, SW-620), and human gastric carcinoma cells (SGC7901) at 104 cells per well were cultured in 4% FBS DMEM in 96-well flat-bottom microplates overnight. The cells were incubated in triplicate with, or without, different concentrations of each test compound for 48h. During the last 4 h incubation, 30 μL of tetrazolium dye (MTT) solution (5 mg/mL) was added to each well. The resulting MTT-formazan crystals were dissolved in 150 μL DMSO, and absorbance was measured spectrophotometrically at 570 nm using an ELISA plate reader. The inhibition induced by each test compound at the indicated concentrations was expressed as a percentage. The concentration required for 50% inhibition (IC$_{50}$) was calculated using the software (GraphPad Prism Version 4.03).

4. Nitrate/nitrite measurement in vitro Assay

The levels of nitrate/nitrite formed from individual compounds in the cells were determined by the colorimetric assay using the nitrate/nitrite colorimetric assay kit (Beyotime, China), according to the manufacturer’s instructions. Briefly, HepG2 cells, HCT-116 and SW-620 cells (5 × 106/well) were treated in triplicate with 100 μM of one of the compounds (10b-e, 10j, 10k, and gemcitabine) for 24 h. The cells were harvested lyzed. The cell lysates were mixed with Griess for 30–300 min, followed by measuring at 540 nm. The cells treated with diluent were used as negative controls for the background levels of nitrate/nitrite production, while with sodium nitrate at different concentrations was used as positive controls for the standard curve.

5. Intracellular NO Release Measurement Using DAF-FM DA

DAF-FM DA (Beyotime) was used as a fluorescent indicator of intracellular NO. When cells grown in a 96-well plate reached 80% confluence, they were washed with PBS. After being loaded with 5 μM DAF-FM DA at 37 °C for 20 min, the cells were rinsed three times with PBS and incubated with test compounds for 24 h. NO production was measured with the flow cytometer with excitation and emission wavelengths of 495 and 515 nm, respectively.

6. Flow cytometry assay of cell apoptosis Assay

HepG2 cells were cultured overnight and incubated in triplicate with the test compound or vehicle for 48 h. The cells were harvested, and stained with FITC-Annexin V/PI (BioVision) at room temperature for 15 min. The percentage of apoptotic cells was determined by flow cytometry (Beckman Coulter) analysis.

7. Western blot Assay
The mechanisms of the cell apoptosis and the inhibitory activity of Ras-related signaling were determined by western blot assay. HepG2 cells at 1.5×10^5/mL were treated with indicated concentration of 10e, gemcitabine, or vehicle control for 8 h. After harvested and lyzed, the cell lysates (50 μg/lane) were separated by SDS-PAGE (12% gel) and transferred onto nitrocellulose membranes. After blocked with 5% fat-free milk, the target proteins were probed with anti-Bax, anti-Bcl-2, anti-Caspase3, anti-Parp-1 and anti-β-actin antibodies (Cell Signaling, Boston), respectively. The bound antibodies were detected by HRP-conjugated second antibodies and visualized using the enhanced chemiluminescent reagent. The relative levels of each signaling event to control β-actin were determined by densimetric scanning.