Supplementary Figures and Supporting Information File

Structural hybridization of three aminoglycoside antibiotics yields a potent broad-spectrum bactericide that eludes bacterial resistance enzymes

Juan Pablo Maianti and Stephen Hanessian*

Index of content:

Figure S1	2
Figure S2	2
Scheme S1	3
General procedures	3
General procedure for Birch reduction	4
6'-Azido-1,6-4''',6'''-bis-carbamate-3,2',2'''-N-Cbz-4',5'-dehydro-3',4'-dideoxy-	
neomycin (14)	5
6'-Azido-N-1-((S)-4''''-(benzyloxycarbonylamino)-2''''-hydroxybutanoyl)-3''',6'''-	
carbamate-3, 2',2'"- <i>N</i> -Cbz-4',5'-dehydro-3',4'-dideoxy-neomycin (15)	6
6'-Azido-N-1-((S)-4''''-(benzyloxycarbonylamino)-2''''-hydroxybutanoyl)-	
3,2',2"',6"'- <i>N</i> -Cbz-4',5'-dehydro-3',4'-dideoxyneomycin (16)	7
N-1-((S)-4""-Amino-2""-hydroxybutanoyl)-4',5'-dehydro-3',4'-dideoxy-neomycin	
(17)	8
6'-Azido-4',5'-dehydro-3',4'-dideoxy- <i>per-N</i> -Cbz-butyrosin (20)	9
4',5'-Dehydro-3',4'-dideoxy-butyrosin (21)	11
6'-Deamino-4',5'-dehydro-3',4'-dideoxy-6'-hydroxy- <i>per-N</i> -Cbz-ribostamycin (S1)	12
6'-Deamino-4',5'-dehydro-3',4'-dideoxy-6'-hydroxy-ribostamycin (23)	13
1,3,2',2"', 6"'- <i>N</i> -Cbz-6'- <i>N</i> -methyl-4',5'-dehydro-3',4'-dideoxy-neomycin (S2)	14
6'-N-Mehtyl-4',5'-dehydro-3',4'-dideoxy-4'-dideoxy-neomycin (26)	15
Experimental references	16
NMR spectra and HPLC purity reports	17

Figure S1. Prevalence of clinical isolates resistant to gentamicin (left darker bars) and amikacin (right lighter bars) identified by the SENTRY Program between 1998-2007. This plot was constructed with raw data from reference 1.

Figure S2. Distribution of aminoglycoside resistance mechanisms in isolates from the CID and SENTRY program collections from three time periods. Bars indicate the overall prevalence of each resistance mechanism, and the darker section indicates the sub-proportion expressed in combination with other mechanisms. Plot adapted from reference 2. RMT = rRNA methyltransferase.

Scheme S1. Synthesis of N6'-substituted G52-neomycin hybrid 26.

General Procedures

All reactions were carried out under an inert atmosphere of argon with dry solvents, using anhydrous conditions unless otherwise stated. Dry dichloromethane (DCM) and tetrahydrofuran (THF) were obtained from a solvent delivery system with activated alumina columns. Methanol (MeOH) was distilled from CaH₂ under argon. Reagents were purchased at the highest commercial quality and used without further purification. Flash column chromatography was performed with silica gel from SilicaFlash P60, particle size 40-63 µm, 230-400 mesh and distilled hexanes, ethyl acetate (EtOAc) or DCM. Free amines were purified with DCM applying gradients of 'ammoniacal MeOH' (referring to a 1:9 solution which was freshly prepared with 28% ammonia liquor before use). Deprotected free-base aminoglycosides were purified with homogeneous solvent systems consisting of CHCl₃/MeOH/NH₄OH_(aq) in ratios ranging from 2:3:0.5 to 2:3:2. Yields refer to chromatographically and spectroscopically homogeneous material. Low temperature experiments conducted for longer than 3 h were conducted with a Cryocool apparatus with an acetone bath. Reactions were monitored by direct-injection low resolution mass spectrometry (LRMS) and thin layer chromatography (TLC) carried out on 0.25 mm E. Merck silica precoated plates (60F-254), visualized under UV light developed with acidified ammonium molybdate/cerium sulfate and heat. NMR spectra were recorded on Bruker ARX-400, AV-400 or AV-700 instruments and are calibrated using residual undeuterated solvent as an internal reference. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Low resolution mass spectra (LRMS) were recorded on a Thermo Finnigan Surveyor MSQ and high resolution mass spectra (HRMS) were recorded on an Agilent Technologies LC-MSD TOF mass spectrometer by electrospray ionization in positive mode. Either protonated

molecular ions $[M+H]^+$ or sodium adducts $[M+Na]^+$ were used for empirical formula confirmation. IR spectra were recorded on a Perkin-Elmer Spectrum One FT-IR using NaCl tablets. Optical rotations were recorded in a 1 dm cell at ambient temperature, on a Perkin-Elmer 343 polarimeter. Analytical HPLC was performed in Achaogen Inc. using mobile phases with 0.1% HFBA, column Sunfire C18, 3x50mm, 2.5 µm, flow of 0.5 mL/min at 40 °C and Chemiluminescent Nitrogen Detection (CLND), water/MeOH gradient A: 25 to 95% in 20 min or gradient B: 30 to 75% in 30 min.

General procedure for Birch reduction

Approx. 5 to 7 mL of ammonia was condensed into a two-neck flask equipped with a cold finger condenser at -78 °C. A solution of protected aminoglycoside (25 to 50 µmol) in anhydrous THF (1 mL) was added to the ammonia solution, followed by a drop of *t*BuOH. Approx. 20 to 30 mg (~1 mmol) of sodium metal were added to the mixture, which was stirred vigorously at -78 °C until the reaction turned deep blue. After 5 min, LRMS analysis indicated complete removal of the protecting groups, and the reaction was quenched with excess AcOH (100 µL). The ammonia was slowly evaporated by bubbling argon at RT, to give a white residue of salts, which was dissolved in CHCl₃/MeOH/NH₄OH (2:3:0.5) and purified by column chromatography using the same solvent system, increasing the proportion of ammonia as required. The fractions containing aminoglycoside were identified by TLC, collected and evaporated under vacuum to furnish a wet residue, which was dissolved in a minimum volume of water and freeze-dried. The dry residue obtained was redissolved in a minimum of water, at which point insoluble traces of silica were generally observed, and were removed by filtration of the solution through a 0.45 μ m syringe filter. Finally, freeze-drying the filtrate yielded the aminoglycoside analog as the free-base fluffy powder. For characterization purposes, the aminoglycoside was redissolved in a minimum volume of water, treated with AcOH (50 µL) and freeze-dried to provide the aminoglycoside acetate salts, which were obtained as yellow solids.

6'-Azido-1,6-4''',6'''-*bis*-carbamate-3,2',2'''-*N*-Cbz-4',5'-dehydro-3',4'-dideoxyneomycin (14).

Compound 13 (100 mg, 78 µmol), was dried by evaporation three times from toluene, dissolved in anhydrous DMF (2 mL), cooled to 0 °C, and treated dropwise with KHMDS (470 µL, 0.235 mmol, 0.5 M in toluene) and stirred overnight at 0 °C, when LRMS indicated complete consumption of the starting material and the major ions corresponded to the *bis*-carbamate 14. The reaction was quenched with AcOH (30 µL), evaporated under high-vacuum at 50 °C to a residue, which was diluted with THF and was filtered through a 0.45 µm syringe filter. The volatiles were evaporated to a residue, which was purified by column chromatography (5 \rightarrow 7 \rightarrow 8% ammoniacal MeOH in DCM), to yield 48.9 mg of the title compound 14 (59%, 46 µmol), as an off-white amorphous solid.

$R_f = 0.3, 20:5:3 \text{ CHCl}_3/\text{EtOAc}/\text{MeOH}$

HRMS (ESI) calcd. for C₄₉H₅₆N₈O₁₉, M + H⁺ = 1061.3734, found 1061.3729 (-0.56 ppm). ¹H NMR (CD₃OD, 400 MHz) δ 7.47-7.08 (m, 15H), 5.59 (s, 1H), 5.21-4.90 (m, 8H), 4.57 (s, 1H), 4.33-4.18 (m, 3H), 4.13 (dd, *J* = 7.80, 5.54 Hz, 1H), 4.07 (s, 1H), 4.02-3.94 (m, 1H), 3.92 (s, 1H), 3.86-3.74 (m, 2H), 3.74-3.58 (m, 4H), 3.56-3.35 (m, 5H), 3.27 (s, 1H), 2.21-1.89 (m, 3H), 1.51 (dd, *J* = 22.72, 11.37 Hz, 1H).

¹³C NMR (CD₃OD, 100 MHz) δ 160.6, 157.1, 156.8, 156.3, 153.2, 144.3, 136.4 - 136.2 (3C), 127.8 - 127.1 (15C), 107.7, 98.9, 97.2, 95.6, 83.0, 81.7, 78.3, 77.9, 76.2, 74.4, 72.8, 67.6, 66.3, 66.1, 65.9, 63.0, 62.0, 53.5, 51.9, 51.8, 50.9, 46.7, 43.1, 31.4, 21.5. FTIR (NaCl): 3381, 2102, 1698, 1429, 1348, 1038 cm⁻¹.

6'-Azido-N-1-((S)-4-(benzyloxycarbonylamino)-2-hydroxybutanoyl)-3''',6'''carbamate-3, 2',2'''-N-Cbz-4',5'-dehydro-3',4'-dideoxy-neomycin (15).

Bis-carbamate **14** (44 mg, 42 µmol) was dissolved in DMF (2 mL), treated with 0.5 M LiOH (530 µL, 0.266 mmol) and stirred overnight, when LRMS indicated deprotection of the C1-amino group, and starting material was not detected on TLC (20:5:3, CHCl₃, EtOAc, MeOH, Rf ~ 0). The reaction was diluted with THF (10 mL) and filtered through a 0.45 µm syringe filter, and the filtrate was evaporated under high-vacuum at 60 °C, to give a residue which was redissolved in THF and refiltered. The filtrate was evaporated under vacuum to a residue, which was used without further purification.

(S)-4-(Benzyloxycarbonylamino)-2-hydroxybutanoic acid (22.3 mg, 88 µmol) was dissolved in THF (1 mL), treated with *N*-hydroxysuccinamide (10.1 mg, 88 µmol), DIPEA (46 µL, 0.155 mmol) and EDC (18.6 mg, 97 µmol), and stirred for 2 h. The C1 free-amine intermediate was dissolved in dry THF (1 mL), and treated with the active-ester solution, which was stirred overnight, when LRMS indicated complete consumption of the free-amine intermediate, and the major ions corresponded to the N1-amide product **15**. The reaction was quenched with sat. NH₄Cl, evaporated under vacuum, diluted with DCM, washed successively with 2 N HCl and sat. NaHCO₃, dried over Na₂SO₄ and filtered. The organic layer was evaporated to a residue, which was purified by column chromatography (9 \rightarrow 10% ammoniacal MeOH in DCM), to yield 21.1 mg of the title compound **15** (40% for 2 steps, 16.6 µmol), as an off-white amorphous solid.

 $R_f = 0.2, 20:5:3 \text{ CHCl}_3/\text{EtOAc/MeOH}$ HRMS (ESI) calcd. for C₆₀H₇₁N₉O₂₂, M + H⁺ = 1270.4785 (-0.14 ppm). ¹H NMR (CD₃OD, 400 MHz) δ 7.44-7.09 (m, 20H), 5.58 (s, 1H), 5.16-4.90 (m, 10H), 4.61-4.52 (m, 2H), 4.27-4.15 (m, 3H), 4.11 (s, 1H), 4.07-4.03 (m, 1H), 4.01 (dd, *J* = 7.43, 3.89 Hz, 1H), 3.95-3.86 (m, 2H), 3.76 (dd, *J* = 9.94, 6.41 Hz, 1H), 3.71-3.53 (m, 5H), 3.53-3.38 (m, 4H), 3.31 (d, *J* = 13.21 Hz, 1H), 3.24-3.12 (m, 2H), 2.18-2.05 (m, 1H), 2.05-1.96 (m, 1H), 1.96-1.83 (m, 2H), 1.75 (dt, *J* = 13.39, 13.35, 6.47 Hz, 1H), 1.41 (dd, *J* = 24.28, 12.06 Hz, 1H).

¹³C NMR (CD₃OD, 100 MHz) δ 175.12, 157.17 - 156.37 (4C), 153.17, 144.23, 136.59 - 136.31 (4C), 127.80 - 126.94 (20C), 108.51, 98.94, 97.79, 95.10, 85.24, 81.60, 77.70, 76.84, 76.37, 74.33, 73.56, 69.04, 67.50, 66.08, 66.04, 65.75, 65.66, 62.85, 61.53, 51.95, 51.77, 49.46, 49.15, 46.82, 43.09, 36.27, 33.79, 32.89, 21.50.

FTIR (NaCl): 3369, 2102, 1698, 1429, 1040 cm⁻¹.

6'-Azido-N-1-((S)-4''''-(benzyloxycarbonylamino)-2''''-hydroxybutanoyl)-3,2',2''',6'''-N-Cbz-4',5'-dehydro-3',4'-dideoxy-neomycin (16).

Compound **15** (21 mg, 16.6 µmol) was dried by evaporation three times from toluene, dissolved in anhydrous benzyl alcohol (2 mL), treated with sodium benzyloxide (100 µL, 1 M in benzyl alcohol, 0.10 mmol), and stirred for 16 h, when LRMS monitoring indicated that an equilibrium was reached, favouring the 6^{'''}-*N*-Cbz product **4.33**. The reaction was quenched with AcOH (10 µL, 0.17 mmol), diluted with DCM (10 mL) and the solution was loaded onto silica gel for purification by column chromatography ($2 \rightarrow 4 \rightarrow 8\%$ MeOH/DCM), to yield 19.5 mg of the title compound **16** (85%, 14 µmol), as an off-white amorphous solid.

 $R_f = 0.4, 20:5:3 \text{ CHCl}_3/\text{EtOAc/MeOH}$ HRMS (ESI) calcd. for C₆₇H₇₉N₉O₂₃, M + Na⁺ = 1400.5181, found 1400.5180 (-0.1 ppm). ¹H NMR (CD₃OD, 700 MHz) δ 7.37-7.11 (m, 25H), 5.55 (s, 1H), 5.11-4.89 (m, 11H), 4.57 (s, 1H), 4.55-4.51 (m, 1H), 4.15-4.10 (m, 2H), 3.98 (dd, J = 7.72, 3.88 Hz, 1H), 3.91 (dd, J = 7.95, 4.51 Hz, 1H), 3.87-3.82 (m, 2H), 3.77 (s, 1H), 3.74 (ddd, J = 11.36, 6.36, 2.13 Hz, 1H), 3.67-3.55 (m, 3H), 3.55-3.48 (m, 3H), 3.45 (d, J = 13.68 Hz, 1H), 3.43-3.34 (m, 3H), 3.34-3.26 (m, 2H), 3.22-3.18 (m, 1H), 3.14 (td, J = 13.28, 6.26, 6.26 Hz, 1H), 2.08 (dd, J = 15.57, 12.20 Hz, 1H), 2.02-1.94 (m, 1H), 1.92-1.87 (m, 1H), 1.85 (ddd, J = 14.01, 7.13, 4.28 Hz, 1H), 1.72 (dt, J = 13.66, 13.38, 6.88 Hz, 1H), 1.39-1.29 (m, 1H).

¹³C NMR (CD₃OD, 100 MHz) δ 175.5, 157.8 - 156.7 (5C), 144.6, 137.0 - 136.7 (5C), 128.1
- 127.1 (25C), 109.2, 99.3, 98.8, 95.6, 85.7, 82.3, 77.5, 77.0, 74.1, 73.9, 73.2, 70.2, 69.4,
67.8, 66.5, 66.2, 66.2, 66.1, 66.0, 61.9, 52.7, 52.3, 49.8, 49.5, 48.1, 41.2, 36.6, 34.2, 33.3,
21.9.

FTIR (NaCl): 3380, 2102, 1693, 1431, 1527, 1031 cm⁻¹.

N-1-((S)-4-Amino-2-hydroxybutanoyl)-4',5'-dehydro-3',4'-dideoxy-neomycin (17).

Compound **17** (31 mg, 22 μ mol) was submitted to the general Birch reduction procedure. The column chromatography solvents were CHCl₃/MeOH/NH₄OH, 2:3:1 followed by 2:3:2. The procedure yielded 14.2 mg of the acetate salt of the title compound **17** (63%, 13.6 μ mol), as a yellow amorphous solid.

 $R_f = 0.1, 2:3:2 \text{ CHCl}_3/\text{MeOH/NH}_4\text{OH}.$

 $[\alpha]^{22}_{D} 27.5^{\circ} (c 0.71, H_2O).$

HRMS (ESI) calcd. for $C_{27}H_{51}N_7O_{13}$, M + H⁺ = 682.3618, found 682.3620 (-0.29 ppm). ¹H NMR (D₂O, 700 MHz) δ 5.66 (d, J = 1.20 Hz, 1H), 5.25-5.24 (m, 1H), 5.21 (d, J = 2.45 Hz, 1H), 5.16 (t, J = 3.76, 3.76 Hz, 1H), 4.47 (dd, J = 5.92, 5.26 Hz, 1H), 4.32 (dd, J = 1.20 Hz, 1H), 5.16 (t, J = 3.76, 3.76 Hz, 1H), 4.47 (dd, J = 5.92, 5.26 Hz, 1H), 4.32 (dd, J = 1.20 Hz, 1H), 5.16 (t, J = 3.76, 3.76 Hz, 1H), 4.47 (dd, J = 5.92, 5.26 Hz, 1H), 4.32 (dd, J = 1.20 Hz, 1H), 5.16 (t, J = 3.76, 3.76 Hz, 1H), 4.47 (dd, J = 5.92, 5.26 Hz, 1H), 4.32 (dd, J = 1.20 Hz, 1H), 5.16 (t, J = 3.76, 3.76 Hz, 1H), 4.47 (dd, J = 5.92, 5.26 Hz, 1H), 4.32 (dd, J = 1.20 Hz, 1H), 5.16 (t, J = 3.76, 3.76 Hz, 1H), 4.47 (dd, J = 5.92, 5.26 Hz, 1H), 4.32 (dd, J = 1.20 Hz, 1H), 5.16 (t, J = 3.76, 3.76 Hz, 1H), 5.16 (t, J = 5.92, 5.26 Hz, 1H), 4.32 (dd, J = 5.92, 5.26 Hz, 1H), 4.90, 2.53 Hz, 1H), 4.27 (dd, J = 8.16, 3.89 Hz, 2H), 4.19-4.17 (m, 1H), 4.12 (dt, J = 5.69, 5.65, 3.42 Hz, 1H), 4.06 (dd, J = 10.13, 9.41 Hz, 1H), 3.93 (dt, J = 4.96, 4.85, 1.33 Hz, 1H), 3.89 (ddd, J = 12.31, 10.60, 4.29 Hz, 1H), 3.82 (dd, J = 12.05, 3.29 Hz, 1H), 3.78-3.77 (m, 1H), 3.75 (t, J = 9.26, 9.26 Hz, 1H), 3.68 (dd, J = 12.14, 5.40 Hz, 1H), 3.65-3.58 (m, 3H), 3.55-3.52 (m, 1H), 3.46 (ddd, J = 12.69, 10.58, 4.27 Hz, 1H), 3.38 (dd, J = 13.64, 6.67 Hz, 1H), 3.32 (dd, J = 13.61, 3.91 Hz, 1H), 3.14-3.05 (m, 2H), 2.64 (ddd, J = 18.35, 4.68, 3.63 Hz, 1H), 2.34 (ddd, J = 18.52, 4.29, 3.58 Hz, 1H), 2.21 (td, J = 12.79, 4.31, 4.31 Hz, 1H), 2.12 (dddd, J = 14.22, 8.11, 6.62, 3.87 Hz, 1H), 1.93 (s, 18H AcOD), 1.98-1.94 (m, 1H), 1.75 (dd, J = 12.64, 12.63 Hz, 1H).

¹³C NMR (D2O, 175 MHz) δ 179.3 (AcOD), 175.5, 143.3, 110.2, 100.4, 96.7, 95.4, 84.4, 81.2, 78.1, 75.9, 73.2, 72.9, 70.0, 69.4, 67.6, 67.2, 61.1, 50.7, 48.7, 48.5, 45.7, 40.5, 40.4, 36.5, 30.8, 29.5, 23.0 (AcOD), 22.0.

LC/CLND gradient A, $R_t = 11.3$ min, 96% purity.

6'-Azido-4',5'-dehydro-3',4'-dideoxy-per-N-Cbz-butirosin (20).

Compound **13** was treated with sodium periodate,³ followed by treatment with DBU to cleave ring D as previously reported (58% yield).⁴ Compound **18** (53 mg, 63 µmol) was dried by evaporation three times from toluene, dissolved in anhydrous DMF (2 mL), cooled to 0 °C, was treated dropwise with KHMDS (380 µL, 0.190 mmol, 0.5 M in toluene) and stirred with cooling for 5 h, when LRMS indicated complete consumption of the starting material and the major ions corresponded to the N1,O6-oxazilidinone: HRMS (ESI) calcd. for $C_{34}H_{39}N_6O_{13}$, M + H⁺ = 741.2726, found 741.2712 (-1.85 ppm). The reaction was quenched with AcOH (20 µL) and the volume of DMF was reduced under high-vacuum at 50 °C to a residue, which was triturated with 10% Et₂O/Hex. The collected crude oxazilidinone intermediate was treated with 6 mL of 2:1 THF:sat. Ba(OH)₂, at 60 °C overnight, when starting material was not detected on TLC (20:5:3, CHCl₃, EtOAc, MeOH,

Rf ~ 0) and LRMS indicated complete deprotection of the C1-amino group: HRMS (ESI) calcd. for $C_{33}H_{42}N_6O_{12}$, M + H⁺ = 715.2933, found 715.2938 (0.4 ppm). The suspension of salts were filtered out through a 0.45 µm syringe filter washing with THF, the filtrate was evaporated under high-vacuum at 60 °C, giving a residue that was diluted in THF and refiltered. The filtrate was evaporated to a residue and used for amide coupling without further purification.

(S)-4-(Benzyloxycarbonylamino)-2-hydroxybutanoic acid (32 mg, 0.126 mmol) was dissolved in THF (1 mL), treated with *N*-hydroxysuccinamide (14.5 mg, 0.126 mmol), DIPEA (70 µL, 0.4 mmol) and EDC (27 mg, 0.141 mmol), and stirred for 2 h. A solution of free-amine intermediate dissolved in THF (1 mL) was treated with the active-ester mixture, which was stirred overnight, when LRMS indicated complete consumption of the starting material C1-amine, and the major ions corresponded to the N1-amide product. The reaction was quenched with sat. NH₄Cl, diluted with DCM, washed successively with 2 N HCl and sat. NaHCO₃, dried over Na₂SO₄ and filtered. The organic fraction was evaporated to a residue, which was purified by column chromatography (5 \rightarrow 8% ammoniacal MeOH in DCM), to yield 22.4 mg of the title compound **20** (38% for 3 steps, 23.6 µmol), as an offwhite amorphous solid.

$R_f = 0.4, 20:5:3 \text{ CHCl}_3/\text{EtOAc}/\text{MeOH}$

HRMS (ESI) calcd. for C₄₅H₅₆N₇O₁₆, M + Na⁺ = 972.3598, found 972.3591 (-0.71 ppm). ¹H NMR (CD₃OD, 400 MHz) δ 7.39-7.18 (m, 15H), 5.62 (d, *J* = 1.42 Hz, 1H), 5.13 (s, 1H), 5.10-4.90 (m, 6H), 4.55 (d, *J* = 3.62 Hz, 1H), 4.10 (d, *J* = 3.69 Hz, 1H), 4.00 (ddd, *J* = 8.89, 7.12, 4.42 Hz, 2H), 3.84 (dt, *J* = 6.34, 5.97, 3.25 Hz, 1H), 3.77 (ddd, *J* = 10.97, 6.68, 2.29 Hz, 1H), 3.74-3.65 (m, 1H), 3.65-3.54 (m, 4H), 3.54-3.45 (m, 3H), 3.41 (dd, *J* = 9.92, 9.18 Hz, 1H), 3.25-3.14 (m, 2H), 2.10 (dd, *J* = 15.34, 11.95 Hz, 1H), 2.01 (dd, *J* = 6.32, 5.08 Hz, 1H), 1.97-1.84 (m, 3H), 1.76 (dt, *J* = 13.23, 13.20, 6.28 Hz, 1H), 1.42 (dd, *J* = 24.37, 12.03 Hz, 1H).

¹³C NMR (CD₃OD, 100 MHz) δ 175.1, 157.2, 156.9, 156.4, 144.2, 136.6, 136.4, 136.4, 127.7 - 127.0 (15C), 109.0, 98.9, 95.0, 85.4, 83.1, 76.4, 74.8, 73.5, 69.9, 69.0, 66.1, 65.7, 65.6, 62.3, 52.0, 49.5, 49.2, 46.2, 36.3, 33.8, 32.9, 21.5.

FTIR (NaCl): 3366, 2102, 1693, 1433, 1041 cm⁻¹.

4',5'-Dehydro-3',4'-dideoxy-butirosin (21).

Compound **20** (22.4 mg, 23 μ mol) was submitted to the general Birch reduction procedure. The column chromatography solvents were CHCl₃/MeOH/NH₄OH, 2:3:1 followed by 2:3:2. The procedure yielded 9.2 mg of the acetate salt of the title compound **21** (52%, 12.1 μ mol), as a yellow amorphous solid.

 $R_f = 0.2, 2:3:2 \text{ CHCl}_3/\text{MeOH/NH}_4\text{OH}.$

 $[\alpha]^{22}{}_{\rm D} 12.6^{\circ} (c \ 0.46, \ H_2 \text{O}).$

HRMS (ESI) calcd. for C₂₁H₄₀N₅O₁₀, M + H⁺ = 522.2770, found 522.2766 (-0.67 ppm). ¹H NMR (D₂O, 400 MHz) δ 5.74 (d, *J* = 1.20 Hz, 1H), 5.21 (d, *J* = 1.26 Hz, 1H), 5.19 (dd, *J* = 4.00, 3.26 Hz, 1H), 4.29 (dd, *J* = 8.15, 3.97 Hz, 1H), 4.16 (dd, *J* = 4.64, 1.00 Hz, 1H), 4.12 (dd, *J* = 6.74, 4.82 Hz, 1H), 3.98 (dt, *J* = 6.64, 6.53, 2.68 Hz, 1H), 3.93-3.86 (m, 2H), 3.86-3.80 (m, 2H), 3.75 (dd, *J* = 9.50, 8.85 Hz, 1H), 3.66-3.60 (m, 3H), 3.56 (dd, *J* = 10.23, 9.25 Hz, 1H), 3.31 (dt, *J* = 10.89, 10.74, 3.60 Hz, 1H), 3.18-3.05 (m, 2H), 2.58 (ddd, *J* = 18.04, 5.34, 4.21 Hz, 1H), 2.40-2.29 (m, 1H), 2.18-2.09 (m, 2H), 1.97 (dt, *J* = 14.58, 14.49, 7.74 Hz, 1H), 1.88 (s, 7H AcOD), 1.62 (q, *J* = 12.50, 12.50, 12.46 Hz, 1H). ¹³C NMR (D₂O, 100 MHz) δ 180.0 (AcOD), 175.2, 142.7, 110.0, 100.2, 96.0, 84.2, 81.8, 77.6, 74.6, 72.7, 69.1, 69.1, 61.4, 48.3, 48.2, 45.5, 40.1, 36.1, 30.5, 29.2, 22.2 (AcOD), 22.1.

LC/CLND gradient A, $R_t = 9.7$ min, 97.7% purity.

6'-Deamino-4',5'-dehydro-3',4'-dideoxy-6'-hydroxy-per-N-Cbz-ribostamycin (S2).

Compound 12 was treated with NaCNBH₃ and 20 drops of AcOH in THF, followed by treatment with 5 mL anhydrous MeOH to approx. pH 8 to 9 to afford the reported intermediate 4',5'-Dehydro-3',4'-dideoxy-6,3',2",5",3"',4"'-*per-N*-Cbz-paromomycin.⁴ This diol intermediate (106 mg, 85 µmol) was dissolved in MeOH (5 mL), treated with 10 equiv. $NaIO_4$ and stirred vigorously overnight,³ when LRMS indicated complete consumption of starting material. The major ion observed corresponded to the sodium adduct of the MeOH bis-hemiacetal of the 3",4"-bis-aldehyde intermediates. The suspension was filtered through a 0.45 µm syringe filter, and the filtrate was reduced under vacuum, diluted with DCM and washed with sat. NaCl. The combined organic layers were evaporated to a residue, which was dissolved in MeOH (3 mL), treated with 1 equiv. DBU and stirred for 4 h, when LRMS indicated complete elimination of the ring D system, leaving the 3" alcohol free. The reaction was neutralized with AcOH, the volume was reduced under vacuum to a residue, which was diluted with DCM and passed through a silica pad washing with 10% MeOH/DCM. The filtrate was evaporated to a residue, which was purified by column chromatography solvents ($3 \rightarrow 5\%$ MeOH/DCM). The procedure yielded 28 mg of the title compound S2 (40%, 34 μ mol), as a white amorphous solid.

$R_f = 0.6, 20:5:3 \text{ CHCl}_3/\text{EtOAc}/\text{MeOH}$

HRMS (ESI) calcd. for $C_{41}H_{49}N_3O_{15}$, $M + H^+ = 824.3236$, found 824.3216 (-2.5 ppm).

¹H NMR (CD₃OD, 400 MHz) δ 7.39-7.13 (m, 15H), 5.58 (s, 1H), 5.13 (s, 1H), 5.07-4.90 (m, 6H), 4.46 (d, J = 3.13 Hz, 1H), 4.06 (d, J = 3.83 Hz, 1H), 3.96 (dd, J = 5.84, 4.85 Hz, 1H), 3.86-3.68 (m, 4H), 3.68-3.57 (m, 2H), 3.56-3.45 (m, 3H), 3.45-3.33 (m, 1H), 3.34-3.24 (m, 1H), 2.06-1.81 (m, 3H), 1.29 (dd, J = 25.12, 12.63 Hz, 1H).

¹³C NMR (CD₃OD, 100 MHz) δ 156.9, 156.9, 156.8, 147.7, 136.5, 136.4, 136.3, 127.7 - 127.1 (15C), 108.9, 97.1, 94.5, 85.2, 83.0, 77.7, 75.1, 74.8, 74.1, 69.9, 66.1, 65.7, 65.7, 62.3, 61.2, 51.2, 49.5, 33.8, 21.6.

23

6'-Deamino-4',5'-dehydro-3',4'-dideoxy-6'-hydroxy-ribostamycin (23).

Compound **S1** (27.4 mg, 33 μ mol) was submitted to the general Birch reduction procedure. The column chromatography solvent was CHCl₃/MeOH/NH₄OH, 2:3:0.5. The procedure yielded 15.8 mg of the acetate salt of the title compound **23** (79%, 26 μ mol), as a yellow amorphous solid.

 $R_f = 0.2, 2:3:1 \text{ CHCl}_3/\text{MeOH/NH}_4\text{OH}.$

 $[\alpha]^{22}_{D} 16.0^{\circ} (c 0.79, H_2O).$

HRMS (ESI) calcd. for $C_{17}H_{31}N_3O_9$, M + H⁺ = 422.2133, found 422.2134 (0.24 ppm).

¹H NMR (D₂O, 700 MHz) δ 5.59 (d, J = 1.38 Hz, 1H), 5.17 (d, J = 1.36 Hz, 1H), 5.01 (t, J = 3.67, 3.67 Hz, 1H), 4.13 (dd, J = 4.76, 1.58 Hz, 1H), 4.09 (dd, J = 6.70, 4.81 Hz, 1H), 4.02 (dd, J = 10.41, 9.25 Hz, 1H), 3.98 (s, 1H), 3.97 (s, 1H), 3.94 (dt, J = 6.65, 6.51, 2.61 Hz, 1H), 3.86 (dt, J = 5.77, 5.73, 1.37 Hz, 1H), 3.81 (dd, J = 12.17, 2.89 Hz, 1H), 3.73 (t, J = 9.20, 9.20 Hz, 1H), 3.63-3.57 (m, 2H), 3.44 (ddd, J = 12.80, 10.64, 3.97 Hz, 1H), 3.28 (ddd, J = 12.37, 10.95, 4.05 Hz, 1H), 2.57 (ddd, J = 17.88, 5.47, 3.90 Hz, 1H), 2.42 (ddd, J = 12.63, 4.46, 3.90 Hz, 1H), 2.27 (ddd, J = 18.34, 4.79, 4.36 Hz, 1H), 1.87 (s, 13H AcOD), 1.79 (q, J = 12.64, 12.64, 12.60 Hz, 1H).

¹³C NMR (D₂O, 175 MHz) δ 180.8 (AcOD), 148.8, 110.4, 97.3, 96.1, 83.8, 82.3, 77.7, 74.9, 71.8, 69.6, 62.0, 60.7, 49.7, 48.3, 46.0, 27.8, 22.9 (AcOD), 22.4.

LC/CLND gradient B, $R_t = 9.3 \text{ min}, 97\%$ purity.

1,3,2',2''', 6'''-N-Cbz-6'-N-methyl-4',5'-dehydro-3',4'-dideoxy-neomycin (S2).

Sodium methoxide in MeOH was prepared by addition of a piece of sodium (~20 mg) to anhydrous MeOH (20 mL). The resulting alkaline solution was diluted with anhydrous MeOH to approx. pH 8 to 9 (Accutint pH paper roll). Aldehyde **12** (94 mg, 61 µmol) was dissolved with the dilute NaOMe solution (5 to 15 mL) and stirred at RT for 3 h. TLC and LRMS was used to monitoring until complete deprotection of the methylcarbonate groups was observed: HRMS (ESI) calcd. for $C_{63}H_{71}N_5O_{22}$, M + Na⁺ = 1272.4483, found 1272.4472 (-1 ppm). The solution was acidified with 100 µL of AcOH, cooled to 0 °C, then treated with methylamine (91 µL, 2 M in THF, 0.18 mmol) and NaCNBH₃ (120 µL, 1 M in THF, 0.12 mmol), stirred and allowed to warm to RT overnight. The reaction was diluted with DCM, washed with sat. NaHCO₃, dried over Na₂SO₄ and filtered. The organic fraction was evaporated to a residue, which was purified by column chromatography (5 \rightarrow 8% ammoniacal MeOH in DCM) yielding 44.5 mg (58%, 35 µmol) of the title compound **S2**, as an off-white amorphous solid.

 $R_f = 0.3$, 15% of ammoniacal MeOH/CHCl₃

HRMS (ESI) calcd. for C₆₄H₇₆N₆O₂₁, M + H⁺ = 1265.5136, found 1265.5137 (0.05 ppm). ¹H NMR (CD₃OD, 400 MHz) δ 7.44-7.12 (m, 25H), 5.52 (s, 1H), 5.17-4.94 (m, 11H), 4.90 (s, 1H), 4.50 (d, *J* = 2.97 Hz, 1H), 4.25-4.10 (m, 2H), 4.02-3.94 (m, 1H), 3.94-3.87 (m, 2H), 3.84 (s, 1H), 3.82-3.76 (m, 1H), 3.68-3.61 (m, 1H), 3.61-3.51 (m, 3H), 3.50-3.46 (m, 1H), 3.46-3.30 (m, 5H), 3.00 (d, *J* = 13.44 Hz, 1H), 2.81 (d, *J* = 13.56 Hz, 1H), 2.18 (s, 3H), 2.14-2.06 (m, 1H), 2.05-1.91 (m, 2H), 1.37 (dd, *J* = 24.33, 12.21 Hz, 1H). ¹³C NMR (CD₃OD, 100 MHz) δ 159.3 - 158.5 (5C), 147.9, 138.3 - 138.2 (5C), 129.7 -128.7 (25C), 110.3, 100.4, 99.1, 97.2, 87.1, 83.7, 79.0, 78.6, 75.7, 75.7, 74.8, 71.7, 69.3, 68.0, 67.7 - 67.7 (5C), 63.3, 53.8, 52.9, 51.6, 47.0, 42.7, 35.5, 35.2, 23.6.

6'-N-Methyl-4',5'-dehydro-3',4'-dideoxy-neomycin (26).

Compound **S2** (44.5 mg, 35 μ mol) was submitted to the general Birch reduction procedure. The column chromatography solvents were CHCl₃/MeOH/NH₄OH, 2:3:1 followed by 2:3:2. The procedure yielded 25.1 mg of the acetate salt of title compound **26** (75%, 26 μ mol), as a yellow amorphous solid.

 $R_f = 0.2, 2:3:2 \text{ CHCl}_3/\text{MeOH/NH}_4\text{OH}.$

 $[\alpha]^{22}_{D} 29.0^{\circ} (c \ 0.61, H_2O).$

HRMS (ESI) calcd. for $C_{24}H_{46}N_6O_{11}$, M + H⁺ = 595.3297, found 595.3286 (-1.91 ppm).

¹H NMR (D₂O, 700 MHz) δ 5.63 (d, J = 1.14 Hz, 1H), 5.22 (d, J = 1.42 Hz, 1H), 5.21 (t, J = 3.76, 3.76 Hz, 1H), 5.19 (d, J = 2.50 Hz, 1H), 4.42 (t, J = 5.48, 5.48 Hz, 1H), 4.29 (dd, J = 4.68, 2.82 Hz, 1H), 4.24 (dd, J = 5.92, 3.97 Hz, 1H), 4.16 (t, J = 3.04, 3.04 Hz, 1H), 4.11 (dt, J = 5.75, 5.63, 3.54 Hz, 1H), 3.96 (t, J = 9.73, 9.73 Hz, 1H), 3.88 (dt, J = 5.46, 5.19, 1.51 Hz, 1H), 3.80 (dd, J = 12.13, 3.14 Hz, 1H), 3.75 (d, J = 2.98 Hz, 1H), 3.65-3.60 (m, 1H), 3.65 (dd, J = 12.14, 5.56 Hz, 1H), 3.52-3.47 (m, 2H), 3.43-3.41 (m, 1H), 3.29-3.18 (m, 3H), 3.24 (dt, J = 11.86, 11.53, 4.19 Hz, 1H), 2.64 (s, 3H), 2.61 (ddd, J = 8.78, 5.76, 3.52 Hz, 1H), 2.36 (ddd, J = 13.35, 5.02, 3.90 Hz, 1H), 2.32 (ddd, J = 18.38, 4.71, 3.13 Hz, 1H), 1.85 (s, 18H AcOD), 1.73 (dd, J = 25.04, 12.83 Hz, 1H).

¹³C NMR (D₂O, 175 MHz) δ 181.2 (AcOD), 141.7 110.3, 102.5, 96.5, 95.5, 83.9, 81.4, 78.4, 76.0, 73.2, 72.0, 70.1, 67.6, 67.2, 61.1, 50.8, 49.8, 49.3, 48.2, 45.6, 40.3, 31.9, 28.5, 23.1 (AcOD), 22.9.

LC/CLND gradient A, $R_t = 11.7$ min, 94% purity.

Experimental references

- Biedenbach, D. J.; Jones, R. N.; Miller, G. H.; Armstrong, E. S., Ten year trend in aminoglycoside resistance from a worldwide collection of Gram-negative pathogens (1998-2007). In *19th European Congress of Clinical Microbiology and Infectious Diseases*, Poster #636, Helsinki, Finland, 2009.
- Armstrong, E. S.; Biedenbach, D. J.; Jones, R. N.; Miller, G. H., Surveying aminoglycoside-resistance mechanisms: a tool for the development of neoglycosides. In 19th European Congress of Clinical Microbiology and Infectious Diseases, Poster #643, Helsinki, Finland, 2009. <u>http://www.achaogen.com/s/ECCMID_P-643.pdf</u> (accessed 09/2015).
- Hanessian, S.; Takamoto, T.; Masse, R., Aminoglycoside antibiotics: oxidative degradations leading to novel biochemical probes and synthetic intermediates. *The Journal of antibiotics* 1975, 28 (10), 835-7.
- Hanessian, S.; Maianti, J. P.; Matias, R. D.; Feeney, L. A.; Armstrong, E. S., Hybrid aminoglycoside antibiotics via Tsuji palladium-catalyzed allylic deoxygenation. *Organic letters* 2011, *13* (24), 6476-9.

- 179.315	- 143.324		75.878 75.878 75.878 77.3161 77.8161 77.8161 77.8161 77.8161 667.581 67.191 67.191 67.143	48.662 48.525 45.740 45.740 40.346 - 36.483 - 36.483 - 30.787 - 29.477	21,950
			······································	- 1 - 1 - 1 - 1 - 1 - 1 - 1 1	-
					– ť
					-
					-
					ç
					-
					-
					_
					- u
y, atalah ya ku sala salaka salaka ku saka sala sala ku ku sa ku ku ku sala sa ku ku sa da ma ya sala ku su sa Ma ku sala ya 20 a manaka ya ya mana a ku ku ku sa ku ku sala sa ku ku sala na ku ku sala na ya ku ku su sa ku s	na na mana any ina dia mandritra dia 2014 amin'ny sora dia mampiasa amin'ny tanàna dia mampiasa dia kaominina d Ny INSEE dia mampiasa dia mampiasa dia kaominina dia mampiasa amin'ny tanàna dia kaominina dia kaominina dia kao	(A store is in the location of a start on the store of the	ala, sinita da una ante da constante en actividad de astronomia da Antes en alter en alte	en al dia mandri ang di an taing an haitan An ang dia mang di ang di a	
and the second	15. 1. We set of the set of the second statements of the second statements.	le de la contrate la contrate de la contrate de la secondaria de la secondaria de la secondaria de la secondari		 A second state of the second stat	
	150	100			0 [orm]

Data File C:\CHEM32\1\DATA\20090306RD-AG\603\RD-AG000007.D Sample Name: JPM-5-59

Acq. Operator	:	rd	Seq. Line	:	7	
Acq. Instrument	:	Chemstation 8	Location	:	Vial	32
Injection Date	:	3/6/2009 5:33:26 PM	Inj	:	1	
			Inj Volume	:	2 µl	
Acq. Method	:	C:\Chem32\1\DATA\20090306RI	D-AG\603\05-25-	95	B_201	4.M
Last changed	:	2/23/2009 10:45:33 AM by ro	b			
Analysis Method	:	C:\CHEM32\1\METHODS\INT_30M	MIN.M			
Last changed	:	3/9/2009 8:54:44 AM by rd				
		(modified after loading)				
Method Info	:	Integration method.				

Area Percent Report

Sorted By		:	Sign	nal		
Multiplier		:	1.0000			
Dilution		:	1.00	000		
Use Multiplier	&	Dilution	Factor	with	ISTDs	

Signal 1: ADC1 A, ADC1 CHANNEL A

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	~	
1	9.492	MM	0.1651	28.48261	2.87491	1.3127	
2	10.628	MM	0.3154	55.44510	2.92964	2.5553	
3	11.324	MF	0.1457	2082.21240	238.20245	95.9642	
4	12.132	FM	0.1330	3.64138	4.56144e-1	0.1678	
Tota	ls :			2169.78150	244.46314		

	936		032 89 89	322 332 332 332 325 355 32 32 32 32 32 32 32 32 32 32 32 32 32	733 445 88 [rel]
	175.		110. 95.9	84.1 81.8 77.5 77.5 77.5 69.0 69.0 61.3 48.3 48.4 48.4	
					5
	I				
					- u
	ha dhalan in an dhan bursha d	low whether the plant of the state	hdataalaadulki shi waxaannad nata shi ahaala	ahillahila hila waxin baran baran alama	
de a la constante de la consta La constante de la constante de	den ferdeligen in den sterne ferdeligen in den sterne sterne sterne sterne sterne sterne sterne sterne sterne s Den sterne st	n na kun de ander in de ander in de ander de and	fill in den ander all en den bener den	ut din vin din son a bisto tabahan ang din karang din ka	1.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
2	200	150	· · · · · · · · · · · · · · · · · · ·	50	[mqq] 0

Data File C:\CHEM32\1\DATA\20090227RD-AG\596\RD-AG000020.D Sample Name: JPM-5-29

Acq. Operator	:	rd	Seq. Line	:	20	
Acq. Instrument	:	Chemstation 8	Location	:	Vial	26
Injection Date	:	2/27/2009 7:42:50 PM	Inj	:	1	
			Inj Volume	:	$2 \ \mu l$	
Acq. Method	:	C:\Chem32\1\DATA\20090227R	D-AG\596\05-25-	95	B_201	M.M
Last changed	:	2/23/2009 10:45:33 AM by r	d			
Analysis Method	:	C:\CHEM32\1\METHODS\INT 30	MIN.M			
Last changed	:	2/27/2009 4:35:05 PM by rd				
		(modified after loading)				
Method Info	:	Integration method.				

Area Percent Report

Sorted By		:	Sign	nal		
Multiplier		:	1.0000			
Dilution		:	1.00	000		
Use Multiplier	&	Dilution	Factor	with	ISTDs	

Signal 1: ADC1 A, ADC1 CHANNEL A

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	3.586	MM	0.1975	12.38992	1.04543	0.4474
2	8.450	MM	0.3210	33.89148	1.40172	1.2237
3	9.690	MF	0.1877	2705.54370	240.25909	97.6908
4	10.541	FM	0.1758	9.77732	9.27024e-1	0.3530
5	11.444	MM	0.2507	7.89570	5.24878e-1	0.2851
Total	ls :			2769.49811	244.15814	

																[le]
		- 180.783	- 148.775		-110.434 	- 96.103	- 83.746 - 82.317 - 77.698	- 74.866 71.814 69.629	61.952	- 60.739 - 49.659	- 48.282 - 45.963	27.826	- 22.857 - 22.443			-
					ļ	<i>}</i>	-\ <i>I</i> -		\	<i>/</i>	<i>{[</i>	.				-
																15
																-
																-
																-
																- 2
													I			-
																-
																-
		1														-
																-
																-
n in an gangan dingtan gidap tin data sing pangan kanangan gisan an	n ya ku gana kuma sa ku sa ku gana ya pasa sa pasa sa ku sa ku Na ku sa k		generative provide the second second second	na na amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny f Indre amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fi		hinn tigger det tig			-					ni dukana din terpi katilara katika nijelegi ti	Mittike (un	- 0
	200		150	1 1	100	· · ·	1	1		50	1	I	I	0	[ppm]	

Data File C:\CHEM32\1\DATA\20090128RD-AG\20090128RD-AG\RD-AG000016.D Sample Name: JPM-5-17

	===			==	
Acq. Operator	:	rd	Seq. Line :	:	16
Acq. Instrument	:	Chemstation 4	Location :	:	Vial 71
Injection Date	:	1/28/2009 11:48:42 PM	Inj :	:	1
			Inj Volume :	:	2 µl
Acq. Method	:	C:\Chem32\1\DATA\200901281	RD-AG\20090128RD-	-A	AG\05-30-75B 210 30M.N
Last changed	:	1/23/2009 12:23:25 PM by :	rc		
Analysis Method	:	C:\CHEM32\1\METHODS\INT 3	OMIN.M		
Last changed	:	1/28/2009 8:43:05 AM by ro	C		
		(modified after loading)			
Method Info	:	Integration method.			

Area Percent Report

Sorted By		:	Signa	1	
Multiplier		:	1.000	0	
Dilution		:	1.000	0	
Use Multiplier	&	Dilution	Factor w	ith	ISTDs

Signal 1: ADC1 A, ADC1 CHANNEL A

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	9.277	MF	0.2662	1937.68665	121.29505	96.9886
2	10.629	FM	0.2323	9.60944	6.89434e-1	0.4810
3	12.757	MM	0.4517	50.55310	1.86522	2.5304
Total	ls :			1997.84919	123.84971	

[rel]	- 15	-	-	- 9	-	۔ ما –	-	-	-
								i an si si da ka ja da ka sa	
								al for some land to be a state of the source	1 1 1 1 fbu - 1 = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
< 23.097 22.896								with a salabular set, se	l nau con subbroked
— 31.870 — 28.511									
								Lastin Factoria	والمنازية عاط م
- 48.162 - 45.628 - 40.306								hulum	
50.746 49.829								the initial wheat before the	1
< 67.591 67.216								(Market) &	1947 - 17 (1949) 1947 - 17 (1949)
75.936 73.208 71.088 70.062								لمراد المراد	
- 83.921 81.373								a in feet of the	anter riferi (h
95.507								the clother directly	1
									।
- 110.266								a filled at the same	
								n, fishek alaman sakenne, prjáne her i ja ke jaso kere	
								n frankelsen menskanne skoleta Måre dette en stal	
N.7.181								ta la faith à cit acus de santaire de santaire	I I I I I I I I I I I I I I I I I I I
								a dhaoid a sa a cinn a dhàbh a' san an airtean airtean	
								na na posta de la constante da c	

Data File C:\CHEM32\1\DATA\20081215RD-AG\557\RD_000014.D Sample Name: JPM4-169

Acq. Operator :	rd	Seq. Line : 14
Acq. Instrument :	Chemstation 8	Location : Vial 9
Injection Date :	12/15/2008 9:52:48 PM	Inj : 1
		Inj Volume : 20 µl
Different Inj Vol	ume from Sequence ! Actual	Inj Volume : 2 µl
Acq. Method :	C:\Chem32\1\DATA\20081215RD-AG	G\557\05-25-95B 20M.M
Last changed :	10/24/2008 3:35:56 PM by rd	_
Analysis Method :	C:\CHEM32\1\METHODS\INT 30MIN.	М
Last changed :	12/16/2008 8:35:51 AM by rd	
	(modified after loading)	
Method Info :	Integration method.	
Sample Info :	20x dilution	

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier		:	1.0	000	
Dilution		:	1.0	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: ADC1 A, ADC1 CHANNEL A

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	10.192	BB	0.1923	111.17039	8.09142	2.2071
2	10.926	BV	0.2445	150.17834	9.29495	2.9815
3	11.674	VB	0.1313	4749.79053	558.00244	94.2971
4	12.997	MM	0.4246	25.90739	1.01685	0.5143
Total	s:			5037.04665	576.40566	