Injectable peptide hydrogels for controlled-release of opioids

Charlotte Martin, Edith Oyen, Jeroen Mangelschots, Mathieu Bibian, Tanila Ben Haddou, Jessica Andrade, James Gardiner, Bruno Van Mele, Annemieke Madder, Richard Hoogenboom, Mariana Spetea and Steven Ballet

*Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, B-1050, Belgium
b Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
c CSIRO Materials Science & Engineering, Bayview Ave, Clayton, VIC 3169, Australia
d Vrije Universiteit Brussel, Physical Chemistry and Polymer Science, Pleinlaan 2, B-1050 Brussels, Belgium
* Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
f Supramolecular Chemistry Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium

Table of contents

1. Peptide synthesis..S1
2. Dynamic rheometry profiles of hydrogelators 2, 4, 5 and 9...S2
3. Transmission electron microscopy images...S2
4. In vitro stability..S3
5. Cytotoxicity..S3
6. Injectable peptide hydrogels as a controlled drug delivery system: movie...S5
7. Dynamic rheometry profiles of morphine co-formulated with hydrogelator 2..S5

1. Peptide synthesis

<table>
<thead>
<tr>
<th>Code</th>
<th>Sequences</th>
<th>Formula</th>
<th>HPLC tr (min)</th>
<th>[M+H]+</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (MBG-1)</td>
<td>H-Phe-Glu-Phe-Gln-Phe-Lys-OH</td>
<td>C_{43}H_{56}N_{8}O_{10}</td>
<td>10.9</td>
<td>845.4202</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>H-Phe-Glu-Phe-Gln-Phe-NH_{2}</td>
<td>C_{43}H_{57}N_{9}O_{9}</td>
<td>11.6</td>
<td>844.4355</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>Ac-Phe-Glu-Phe-Gln-Phe-NH_{2}</td>
<td>C_{45}H_{60}N_{9}O_{10}</td>
<td>10.7</td>
<td>886.4322</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>H-phe-glu-phe-gln-phe-lys-NH_{2}</td>
<td>C_{43}H_{57}N_{9}O_{9}</td>
<td>11.2</td>
<td>844.4355</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>H-Ile-Glu-Ile-Gln-Ile-Lys-NH_{2}</td>
<td>C_{34}H_{63}N_{9}O_{9}</td>
<td>9.8</td>
<td>742.4822</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>H-Leu-Glu-Leu-Gln-Leu-Lys-NH_{2}</td>
<td>C_{34}H_{63}N_{9}O_{9}</td>
<td>10.1</td>
<td>742.4822</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>H-Val-Glu-Val-Gln-Val-Lys-NH_{2}</td>
<td>C_{31}H_{57}N_{9}O_{9}</td>
<td>8.3</td>
<td>700.4352</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>H-Ala-Ala-Ala-Gln-Ala-Lys-NH_{2}</td>
<td>C_{25}H_{45}N_{9}O_{9}</td>
<td>5.4</td>
<td>616.3413</td>
<td>54</td>
</tr>
<tr>
<td>9</td>
<td>H-Cha-Glu-Cha-Gln-Cha-Lys-NH_{2}</td>
<td>C_{43}H_{73}N_{9}O_{9}</td>
<td>12.8</td>
<td>862.5760</td>
<td>28</td>
</tr>
</tbody>
</table>
2. Dynamic rheometry profiles of hydrogelators 2, 4, 5 and 9

Figure S1. Dynamic frequency sweep data for the hydrogelators 2, 4, 5 and 9 at a concentration of 2% w/v in PBS.

3. Transmission electron microscopy images

Figure S2. TEM image with negative staining of hydrogelator 2 (left, scale bar 70 nm) and cryogenic TEM picture for hydrogel 4 (right, scale bar 200 nm).

4. In vitro stability
Figure S3. Plasma concentration of hydrogelator 2 as a function of time (semi Log). Samples were taken after 0, 5, 10, 15, 30, 60 and 90 minutes. The experiment was performed on three independent samples. The average result is plotted allowing to determine the equation which describe the degradation as a function of time as $y = -0.02024x + 0.9611$ given an half-life of 14.71 ± 0.15 min.

5. Cytotoxicity

A: ULA

B: Control TCPS

C: Hydrogelator 2
Figure S4. Qualitative cytotoxicity determined using a two-color fluorescence cell viability assay that is based on the simultaneous determination of live and dead cells. In the left, Scale bar calculation: 200μm is represented as 16.3% of the width of the original image.

The LIVE/DEAD® Viability/Cytotoxicity Assay Kit provides a two-color fluorescence cell viability assay that is based on the simultaneous determination of live and dead cells. Live cells have intracellular esterases that convert nonfluorescent, cell-permeable calcein acetoxy methyl (calcein AM) to the intensely fluorescent calcein. The polyanionic dye calcein is well retained within live cells, producing intense uniform green fluorescence in live cells, whereas the ethidium homodimer-1 (EthD-1) enters damaged cells and undergoes strongly enhanced fluorescence upon binding to nucleic acids thereby producing a bright red fluorescence in damaged or dead cells. Cells were plated in duplicate (1 x 10⁵ cell/well in 16 well plates) on control TCPS culture plate, control ULA plate and ULA plate containing the nanostructured hydrogels (including hydrogels 2 and 4). Plates were incubated in 5% CO₂ at 37°C for 1 day to allow cell attachment and spreading to occur. Media was removed and each well was washed with Gibco® solution to remove serum proteins. A stock solution of (1 mM) calcein AM and (2 mM) ethidium homodimer in PBS was prepared according to the live/dead assay (Molecular Probes L3224) package instructions, and 100 µL of this stock was added to each well. Photographs of cells were obtained using 10 times magnification on Nikon microscope.

6. Injectable peptide hydrogels as a controlled drug delivery system: movie
Amphipathic α-peptide low molecular weight gelators have been developed as new controlled drug delivery systems. Prior to use in vivo experiments, injectability of the hydrogels was tested and immediate re-gelation was confirmed after injection through a 25G needle destined for subcutaneous injection. The injection and re-gelation steps could be repeated several times using the same hydrogel sample.

http://youtu.be/zXTQWdMY5CM

7. Dynamic rheometry profiles of morphine co-formulated with hydrogelator 2

![Dynamic Rheometry Profiles](image)

Figure S5. Dynamic frequency sweep data for the hydrogelator 2 (2% w/v) and hydrogelator 2 (2% w/v) co-formulated with 0.5 (10.3mM), 5 (103mM) and 10 mg (206 mM) of morphine in physiological saline.