Supporting information for

Inhibitory effects of NAMI-A-like ruthenium complexes on prion neuropeptide fibril formation

Xuesong Wang, Dengsen Zhu, Cong Zhao, Lei He, Weihong Du*

Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
Figure S1. The 1H-NMR spectra of the complexes KP418 (A), NAMI-A (B), KP1019 (C), and KP1019-2(D).
Figure S3. Evaluation of the ability of KP418, NAMI-A, KP1019, and KP1019-2 to inhibit the aggregation of PrP106–126.
Figure S4. The ThT spectra carried out in the presence and absence of ruthenium complexes. Compared with fluorescence intensity of PrP106-126, the FL intensity of metal complex is small enough to be ignored.
Figure S5. The ability of ruthenium complexes to inhibit the aggregation of PrP106−126, KP418 (A), NAMI-A (B), KP1019 (C), and KP1019-2 (D) measured by ThT fluorescence assay. The concentration of the peptide was 100 µM and the IC$_{50}$ values were summarized in Table 2.
Figure S6. Effects of ruthenium complex on the viability of human SH-SY5Y cells determined with a MTT assay. It means that ruthenium complex have a relative low cytotoxicity. *P < 0.01 versus control group.