Synthesis of Shape-Controlled NiO/Graphene Nanocomposites with Enhanced Supercapacitive Properties

Xiaomiao Feng,* 1 Jinhua Zhou, 1 Linlin Wang, 1 Yi Li, 1 Zhendong Huang, 1 Shufen Chen, 1 Yanwen Ma,* 1 Lianhui Wang, 1 and Xiaohong Yan2

1 Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM);
2 College of Electronic Science and Engineering, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
* Corresponding authors.
E-mail addresses: iamxmfeng@njupt.edu.cn, iamywma@njupt.edu.cn

1. Different magnification SEM images of GN-f.

Fig.S1 SEM images of GN-f with different magnification.

2. TEM images of flowerlike and polyhedral NiO/graphene nanocomposites
TEM was employed for the crystal structure investigation. Fig. S2a showed a typical micrograph with a diameter about 3 μm, consistent with the morphology observed in SEM image. It was detected the NiO flower anchored on crumbled graphene. In the fig. S2b, a lot of polyhedral NiO were distributed on graphene sheets with average 50 nm in size.

Fig.S2 TEM images of GN-f (A) and GN-P (B)
3. XPS, XRD pattern, and FT-IR of rGO.

Fig. S3 XPS spectrum (a) and FT-IR spectrum (b) (inset the XRD pattern) of rGO